На главную

Статья по теме: Динамическая выносливость

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

По величине обобщенного показателя П, представляющего собой произведение ак Е3оо- az N (ак - когезионная прочность резиновой смеси; Езоо- условная прочность при 300% удлинении резины; az - сопротивление раздиру; N - динамическая выносливость - все показатели приведены к показателям из натурального каучука, для которого они взяты за единицу), наилучшие значения достигнуты у СКИ-3 с олигомерами, имеющими концевые гидразидные (П=0,95) и гидразонные группы (П=1,56) при дозировке 5 масс.ч. на 100 масс.ч. каучука. Помимо олиго-меров с вышеперечисленными концевыми функциональными группами, в работе [117] был исследован блок-сополимер бутадиена с изопреном (80:20) молекулярной массы 3000-4000 и имеющий концевые изоцианатные группы (ОДДИ) с содержанием NCO - групп 2,4 масс. %. Кроме того3были изучены уже известный олигомер на основе изопрена с концевыми гидразидными группами (СКИ-ГД с содержанием CONHNH2 - групп 3,74 масс. %) и блок-сополимер, аналогичный СКИ-ГД, но без концевых NCO-групп (ПДИ-О). Исследования были проведены на резиновых смесях протекторного типа с модификатором РУ-1 или без него (СКИ-3-100 масс.ч.; тех. углерод - 52 масс.ч.). Оказалось, что резиновые смеси, содержащие СКИ-ГД в отсутствии РУ-1, характеризуются существенно большей вязкостью по Муни и склонностью к преждевременной подвулканизации. Смесь с ПДИ-О без РУ-1 отличается повышенной пластичностью и несколько меньшей, чем у эталонной смеси, вязкостью по Муни. Технические свойства резин без РУ-1 показывают, что ЕЗОО уменьшается в ряду: эталон = СКИ-ГД > ПДИ-О > ОДДИ, а твердость снижается в ряду СКИ-ГД > ОДДИ> эталон ~ ПДИ-О. Модификация протекторных резин любым из исследованных олигомеров практически не влияет на эластичность, термостой-[4, С.139]

Отсюда следует, что при незначительных локальных перегревах повышение температуры положительно сказывается на динамической выносливости. Существенное влияние оказывает и режим испытания: так, при оо — соп$1 высокомодульпые полимеры (6 = 0/^) характеризуются большей долговечностью. Поэтому пластмассы, которые в условиях эксплуатации находятся в стеклообразном состоянии, имеют большую динамическую выносливость в режиме <зо = соп51. При многократных деформациях в режиме ео=соп5{ динамическая выносливость высокомодульных материалов снижается.[1, С.341]

Степень эластичности при растяжении нити на 4% составляет 100%, а при растяжении на 10% —для текстильной и технических нитей равно соответственно 60 и 70%. Эластичность волокна лавсан близка к эластичности натуральной шерсти, а во влажном состоянии превосходит ее (мокрая ткань из полиэфирного волокна через 15 с после сминания возвращается в прежнее состояние на 85%, а шерстяная — только на 20%). Устойчивость полиэфирного волокна к истиранию ниже, чем у полиамидных волокон; сопротивление многократным изгибам (динамическая выносливость) ниже, чем у полиамидных, но в 2,5 раза, выше, чем у гидратцеллюлозных[6, С.386]

Продолжаются работы по модифицирующим системам, в которых при вулканизации идет отверждение фенольной ново-лачной смолы (ФНС). Так, для улучшения физико-механических свойств резин и увеличения их адгезии к шинному корду (текстильному, металлокорду, стеклокорду) резиновая смесь включает ПК, СК или их смесь; донор метилена (I), выделяющий при нагревании формальдегид (II) (гексаметилентетрамин, метилоламин или его простые и сложные эфиры); акцептор I -фенольную новолачную смолу [332]. В патенте приводится в качестве примера опытная рецептура резиновой смеси. В сравнении с контрольной резиной модуль при 200 %-ном удлинении вырос на 1,7-10 %; условная прочность при растяжении на 7-9 %; адгезия к латунированному металлокорду после старения в паре (120° Сх24 часа) выше контрольной на 13-16 %, а во влажной среде (влажность 95 %, 21 день при 85° С) на 8-10 %; динамическая выносливость выросла на 12-26 %.[4, С.280]

У полимеров, находящихся в высокоэ.пастическом состоянии, гистерезисные потери намного выше по сравнению со стеклообразными. Поэтому все рецептурные и технологические факторы, приводящие к снижению потерь (замена каучука на более гибкий, повышение гибкости за счет введения небольшого количества пластификатора и др.), способствуют повышению динамической выносливости. Мягкие резины с невысоким модулем характеризуются большей выносливостью при работе в режиме е0 = соп51, а жесткие — в режиме ао = соп51. Наполнители, например технический углерод, оказывают сложное влияние на динамическую усталость: при ео^е0* определяющим фактором является способность наполнителя ускорять или нпгибировать окисление, а при ео—ескр влияние наполнителя на /Уц зависит от его влияния на уровень гистерезисных потерь — чем в большей степени наполнитель увеличивает потерн, тем больше снижаются усталостная прочность н динамическая выносливость.[1, С.341]

Динамическая выносливость (угол изгиба 60°, 343 К, 300 циклов/мин) или время до образования трещин, ч 1 >46 24 >138 >138[2, С.287]

Динамическая выносливость до начала разрушения мин цикл[3, С.144]

Динамическая выносливость при изгибе с проколом, тыс. ц. 16,2 7,1 59,7[4, С.44]

Динамическая выносливость (угол изгаба 60°, 343 К, 300 циклов/мин) или время до образования трещин, ч 1 >46 24 >138 >138[5, С.287]

Динамическая выносливость, или «ходимость», N, а также динамическая прочность резины, характеризуемая истинным разрывным напряжением а, имеют такой же статистический характер, как и прочность резины при статических испытаниях. Это следует из наблюдаемого разброса результатов испытаний на динамическую выносливость.[8, С.206]

Рис. 3. Сопротивление росту трешпп (Л'р) п динамическая выносливость при симметричном знакопеременном изгибе (N) вулканипатов, наполненных 1! загисимостп от соотношения[10, С.167]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
2. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
3. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
4. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
5. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
6. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
7. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
8. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
9. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
12. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
13. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную