На главную

Статья по теме: Количества пластификатора

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Уравнением (74) можно пользоваться для описания процесса перехода полимера из твердого в высокоэластическое состояние при введении в него определенного количества пластификатора. Однако это уравнение можно существенно упростить. Во-первых, будем считать, что количество межмолекулярных связей значительно меньше, чем общее количество полярных групп, способных к межмолекулярному взаимодействию (именно так и происходит в действительности, как показали эксперименты: для образования прочной сетки межмолекулярных связей и для отверждения полимера необходимо зафиксировать всего лишь менее 10 % полярных групп). Иными словами соблюдается условие[2, С.123]

Микроскопическое изучение вулканизационной сетки. Вулка-низат подвергают набуханию до равновесного состояния в стироле в присутствии пероксида, ингибитора и небольшого количества пластификатора (фталата). После полимеризации стирола из полученного композита вырезают ультратонкие образцы, которые обрабатывают тетраоксидом осмия и рассматривают с помощью трансмиссионной электронной микроскопии (ТЭМ). При достаточно большом увеличении можно увидеть сетчатую структуру, темные области которой соответствуют цепям сетки или их пучкам, однако на определенной стадии в процессе фазового разделения образуется тройная система, состоящая из эластомера, полистирола и сополимеризованного стирола. При этом наблюдается линейная корреляция между размерами ячеек и молекулярной массой цепей сетки Мс, что позволяет оценивать плотность цепей сетки для отдельных фаз вулканизатов смесей, причем результаты хорошо согласуются с данными ЯМР-спектроскопии набухших вулканизатов,[5, С.517]

У полимеров, находящихся в высокоэ.пастическом состоянии, гистерезисные потери намного выше по сравнению со стеклообразными. Поэтому все рецептурные и технологические факторы, приводящие к снижению потерь (замена каучука на более гибкий, повышение гибкости за счет введения небольшого количества пластификатора и др.), способствуют повышению динамической выносливости. Мягкие резины с невысоким модулем характеризуются большей выносливостью при работе в режиме е0 = соп51, а жесткие — в режиме ао = соп51. Наполнители, например технический углерод, оказывают сложное влияние на динамическую усталость: при ео^е0* определяющим фактором является способность наполнителя ускорять или нпгибировать окисление, а при ео—ескр влияние наполнителя на /Уц зависит от его влияния на уровень гистерезисных потерь — чем в большей степени наполнитель увеличивает потерн, тем больше снижаются усталостная прочность н динамическая выносливость.[3, С.341]

Пластификация - это введение в полимер совмещающихся с ним низкомолекулярных нелетучих веществ с целью улучшения технологических и эксплуатационных характеристик полимерных материалов. В зависимости от химической природы и физической структуры полимера, а также от природы пластификатора и его концентрации, введение пластификатора в полимер может снижать либо Гс, либо Гт, либо одновременно обе температуры перехода. При этом у гибкоцепных полимеров происходит уменьшение интервала высокоэластического состояния при увеличении количества пластификатора, вплоть до полного исчезновения интервала ГС...ГТ (растворение полимера в пластификаторе). У жесткоцепных полимеров, наоборот, при введении пластификатора температурная область высокоэластического состояния расширяется.[6, С.169]

Несмотря на то, что основным требованием к соединениям, используемым в качестве пластификатора, является их совместимость с полимером, уже давно для модификации свойств полимеров использовались вещества,- несовместимые с эфирами целлюлозы. При этом предполагалось [35], что пластификация полимеров несовместимыми с ними пластификаторами реализуется за счет увеличения рыхлости упаковки макромолекул. Позднее Козлов с сотр. [101, 102] предложил механизм, объясняющий действие «плохих» пластификаторов. Согласно этому механизму несовместимый пластификатор может взаимодействовать только с молекулами, находящимися на поверхности вторичных структурных образований. При этом межструктурная пластификация осуществляется без сколько-нибудь существенного изменения эластических свойств полимера. Незначительные количества пластификатора оказываются достаточными для обеспечения начального акта распада крупных надмолекулярных структур, что приводит к повышению их тепловой подвижности. Температура стеклования по- . лимера при этом не должна снижаться. По мнению Тагер и сотр. [103], подвижность формирующихся структурных образований связана не с внутренним, а с внешним трением и при межструктурной пластификации действуют те же законы, что и при граничной[7, С.153]

Выбор типа и количества пластификатора при разработке композиции пластифицированного полимера зависит*от природы полимера, условий его переработки и эксплуатации.[7, С.162]

Зависимость размеров сферолитов от количества пластификатора (рис. 2) также экстремальна, причем самые большие сферолиты получаются, когда объемная доля гуттаперчи в смеси (ср) равна 0,5 (толщина пленки в этих образцах —-20 и.). Видимо, добавление масла в малых количествах уменьшает вязкость системы, облегчая диффузию подвижных структурных элементов и рост сферолитов. По мере увеличения количества пластификатора в смесях с объемной долей гуттаперчи менее 0,5 размер сферолитов уменьшается в результате того, что недостаточно полимера для их дальнейшего роста. Аналогичное влияние пластификатора на кристаллизацию гуттаперчи наблюдал Шуур [5].[15, С.194]

При введении в ПВХ-композицию большого количества пластификатора (70—500 масс. ч. пластификатора на 100 масс. ч. ПВХ) получается оптически чувствительный низкомодульный [179]', амортизирующий материал [180] (600—2000 масс. ч. пластификатора на 100 масс. ч. ПВХ) и другие материалы целевого назначения [181].[7, С.163]

В случае кристаллического полистирола с увеличением количества пластификатора разность Тс — Тт возрастает, а при пластификации атактического полимера разность уменьшается. Фазовое состояние, по наблюдениям авторов, не влияет на смещение температуры стеклования при пластификации и определяется только природой и концентрацией пластификатора5464.[28, С.329]

Рнс. 8.7. Зависимость логарифмического декремента затухания от температуры (по Вольфу) для поливинилхлорида, содержащего различные количества пластификатора — диэтилгексилфталата; соотношение компонентов:[13, С.161]

Одним из наиболее употребляемых показателей эффективности действия пластификаторов служит степень снижения температуры стеклования в зависимости от количества пластификатора, хотя изменение механических свойств (спектр времен релаксации, соотношение между вязкими и упругими свойствами, устойчивость к хрупкому разрушению при действии кратковременных нагрузок и т. п.) не всегда однозначно определяется видом и количеством добавляемого пластификатора. Можно характеризовать действие пластификатора и по вязкости, т. е. по необратимой части общей деформации полимерной системы. Этот прием будет использован для описания пластифицированных систем в следующем разделе настоящей главы.[12, С.352]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
2. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
3. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
4. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
10. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
11. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
12. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
13. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
14. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
15. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
16. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
17. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
18. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
19. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
20. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
21. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
22. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
23. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
24. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
25. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
26. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
27. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
28. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
29. Фишер Э.N. Экструзия пластических масс, 1970, 288 с.

На главную