На главную

Статья по теме: Характеристик полимерных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Важнейшей из характеристик полимерных сеток является число эластически активных цепей в единице объема полимера v. Эластически активной называют цепь линейного строения, заключенную между такими двумя соседними узлами сетки, от каждого из которых к поверхности образца исходят по меньшей мере три независимых ветви [7]. У вулканизованных каучуков обычно v = 10 — — 100 моль/м3. v является функцией либо общего числа сшивок, молекулярной массы и молекулярно-массового распределения исходных макромолекул, если сетка образуется путем вулканизации, либо степени завершенности реакции и функциональности мономеров, если сетка формируется в процессе полифункциональной поликонденсации.[1, С.42]

Комплекс структурно-механических характеристик полимерных материалов зависит от физических состояний полимеров.[2, С.122]

Устройство для исследования реологических характеристик полимерных материалов (СССР) состоит из червячной машины с двумя шнеками, зоны выдавливания которых соединены с зонами загрузки двумя полостями. В первой полости размещен ротор вискозиметра, во второй - плунжер. При работе устройства полимерная смесь непрерывно циркулирует от одного шнека к другому, и реологические характеристики можно измерять с помощью ротационного вискозиметра при заданной температуре. С помощью червячной машины можно производить впрыскивание смеси в воздух или испытательную форму, измеряя при этом давление впрыска и количество выдавливаемого материала.[7, С.446]

Наиболее распространены измерения неравновесных характеристик полимерных материалов при малых деформациях, когда а ~ е (но отношение а/е зависит от временного фактора) и применимы соотношения линейной теории вязкоупрутости (см. Больцмана — Волътерры уравнения, Реология). Определение М. в неравновесных режимах деформирования позволяет сопоставить значения М. с релаксационным спектром полимера, что дает возможность перейти к общей характеристике механич. свойств материала.[15, С.140]

С иных позиций проблема соответствия динамических и стационарных характеристик полимерных систем рассматривается Ф. Вики, который исходит из модели пористого молекулярного клубка, вращающегося в потоке при сдвиговом течении. Как это было показано при рассмотрении вязкоупругих свойств такой модели (см. раздел 1.3 настоящей главы), колебания сегментов обусловливают как эффект аномалии вязкости, так и возникновение релаксационного спектра. Это приводит к простой форме корреляции между зависимостями[13, С.308]

Новый вискозиметр Physica LCi предназначен [23] для изучения вязкостных характеристик полимерных материалов и записи семейства кривых течения в чрезвычайно широком диапазоне вязкости -от 0,001 до 3000 Па-с. Использование новейшей сенсорной техники позволяет исключить переналадку прибора при переходе от низковязких к высоковязким образцам. Вискозиметр имеет сменные рабочие узлы типа конус-плоскость и цилиндр-цилиндр, значения измеренной вязкости и температуры образца выводятся на монитор или печатающее устройство.[7, С.445]

Этот метод составляет основу прибора РУИЗ-2Т (см. [10]), который особенно полезен для измерений механических характеристик полимерных материалов, проявляющих сильную зависимость интенсивности рассеяния колебаний от амплитуды деформаций. В этом приборе электромагнитная схема возбуждения может создавать как изгибные, так и крутильные колебания. Электрическая схема прибора позволяет проводить измерения в автоматическом режиме.[11, С.155]

Пластификация - это введение в полимер совмещающихся с ним низкомолекулярных нелетучих веществ с целью улучшения технологических и эксплуатационных характеристик полимерных материалов. В зависимости от химической природы и физической структуры полимера, а также от природы пластификатора и его концентрации, введение пластификатора в полимер может снижать либо Гс, либо Гт, либо одновременно обе температуры перехода. При этом у гибкоцепных полимеров происходит уменьшение интервала высокоэластического состояния при увеличении количества пластификатора, вплоть до полного исчезновения интервала ГС...ГТ (растворение полимера в пластификаторе). У жесткоцепных полимеров, наоборот, при введении пластификатора температурная область высокоэластического состояния расширяется.[8, С.169]

Разработанный в нашей стране прибор "Вискоэл" предназначен [35] для одновременного и раздельного экспресс-контроля в динамическом режиме вязких и упругих характеристик полимерных материалов в диапазоне от 102 до 106 Па. Прибор состоит из двух блоков - измерительного и вибродатчика, представляющего собой двойную электродинамическую систему. Подвижные катушки систем соединены жестким штоком, к которому крепится зонд, вводимый в полимерный материал. Катушки, шток и зонд совершают синхронные движения в осевом направлении под действием синусоидального электрического напряжения, подводимого к силовой катушке. Так как в процессе измерений амплитуда колебаний зонда поддерживается постоянной, то величина напряжения, подводимого к силовой катушке, пропорциональна вязкоупругости материала. Поскольку амплитуда колебаний зонда мала (25 мкм), в процессе измерения[7, С.456]

Обобщение линейной теории вязкоупругости на случай больших деформаций позволяет рассмотреть вопрос о возможных формах корреляции стационарных и динамических характеристик полимерных систем. Как указывалось в гл. 2, в зависимости от формы примененного дифференциального оператора получаются различные предсказания относительно формы зависимостей т (у) и 0 (у). Однако при этом функции G' (to) и G" (со) оказываются инвариантными к способу описания нелинейных эффектов при установившемся течении. Поэтому применительно к рассматриваемой проблеме корреляции динамических и стационарных характеристик полимерных систем использование дифференциальных операторов сложного строения позволяет модифицировать теоретические предсказания относительно стационарных характеристик, т. е. функций т (у) и а (у), но не влияет на вид функций G' (со) и G" (со), которые определяются только выбором значений констант используемой реологической модели.[13, С.304]

Таким образом, сопоставление т] (у) с |т]*| (а>) приу == ю остается в настоящее время наиболее достоверным эмпирическим методом корреляции динамических и стационарных характеристик полимерных систем. Этот важный и справедливый в огромном числе случаев экспериментальный факт должен явиться критерием для оценки адекватности предлагаемых новых феноменологических или молеку-лярно-кинетических моделей, а также для проверки корректности подбора функций, характеризующих вязкоупругие свойства тех или иных конкретных материалов.[13, С.312]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
6. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
7. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
8. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
9. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
10. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
11. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
12. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
13. Виноградов Г.В. Реология полимеров, 1977, 440 с.
14. Колтунов М.А. Прочностные расчет изделий из полимерных материалов, 1983, 240 с.
15. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
16. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
17. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
18. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
19. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
20. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную