На главную

Статья по теме: Состояний полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Границы существования релаксационных состояний полимеров можно устанавливать с помощью термомеханического метода, который позволяет оценивать деформируемость полимера в широком интервале температур при заданном режиме нагружения и нагревания. При помощи этого метода, пользуясь термомеханической кривой (ТМ-кривой) -графиком зависимости относительной деформации от температуры - определяют температуры перехода. Более подробно термомеханический метод, схема прибора (весов Каргина), методики анализа и обработки ТМ-кривых описаны в учебном пособии [30].[6, С.157]

Релаксационный характер механических свойств и физических состояний полимеров. Специфика полимеров заключается не только в проявляющейся при определенных условиях способности к большим обратимым деформациям, но также в том, что их механические свойства носят резко выраженный релаксационный характер, т. е. сильно зависят от временной, а в случае периодических деформаций, от частотной шкалы. Эта. зависимость, как н высокоэластичность, является следствием длинноцепочечного строения полимеров и обусловлена необходимостью длительных промежутков времени (времен релаксации) для конформационной перестройки большого числа связанных между собой структурных элементов цепи при переходе ее из одного равновесного состояния в другое. Время релаксации является функцией температуры и за-[1, С.40]

Вязкотекучее состояние — одно из структурно-жидких релаксационных состояний полимеров, при котором воздействие на систему механических сил приводит преимущественно к развитию необратимых (пластических) деформаций. Впрочем, это определение, приведенное в [24, т. 1, с. 577], не учитывает рассмотренных выше факторов, связанных со стрелкой действия и релаксационным спектром (см. рис. II.2); определение относится к обычным, условиям воздействия с малой скоростью, когда отклик системы на воздействие в целом неупругий.[3, С.162]

Комплекс структурно-механических характеристик полимерных материалов зависит от физических состояний полимеров.[2, С.122]

Пачки представляют собой роевые образования, состоящие из нескольких десятков плотно и преимущественно параллельно уложенных макромолекул. Наличие пачек характерно как для жест-коцепных аморфных, так и для кристаллических состояний полимеров (рис. 1.2). Более гибкие макромолекулы легко сворачиваются в глобулы (рис. 1.3). В результате дальнейшей агрегации[4, С.19]

При дальнейшем нагревании резкое увеличение деформации связано с появлением вязкотекучего состояния, при котором характерно вязкое течение полимерного вещества. Соответствующие температуры переходов из стеклообразного состояния в высокоэластическое и из высокоэластического в вязко-текучее получили название "температура стеклования" и "температура текучести". Прежде чем рассмотреть природу каждого из физических состояний полимеров, отметим, что в зависимости от химического строения полимера, т.е. от гибкости или жесткости его макромолекул, температура стеклования может принимать самые разнообразные значения. В настоящее время известны полимеры, у которых температура стеклования изменяется от -1 23 до 600 °С. Примером первого из них является полидиметилсилоксан, который имеет следующую структурную формулу[5, С.87]

Критерием релаксационных состояний полимеров является характер (обратимые или необратимые) и масштаб деформаций[7, С.175]

В связи с разнообразием фазовых и физических состояний полимеров, связанных с размерами, формой, расположением и взаимодействием гибких макромолекул, прочность полимерных материалов зависит как от их свойств, так и от внешних условий, при которых происходит разрушение полимеров. Влияние некоторых факторов на прочность полимеров в настоящее время уже изучено, но в большинстве случаев ответить однозначно на вопрос о роли одного фактора не удается, так как одновременно с ним проявляется действие и других, тесно связанных с первым.[13, С.232]

В связи с разнообразием фазовых и физических состояний полимеров, связанных с размерами, формой, расположением и взаимодействием гибких макромолекул, прочность полимерных материалов зависит как от их свойств, так и от внешних условий, при которых происходит разрушение полимеров. Влияние некоторых факторов на прочность полимеров в настоящее время уже изучено, но в большинстве случаев ответить однозначно на вопрос о роли одного фактора не удается, так как одновременно с ним проявляется действие и других, тесно связанных с первым.[17, С.232]

Вполне понятна природа фазово-агрегатных и релаксационных состояний полимеров и их сложные суперпозиции, приводящие к огромному разнообразию макроскопических свойств. В рамках этого понимания проблемы механики полимеров все-более приобретают количественный характер, хотя, как отмечал в ряде выступлений Кувшинский, бездумное сведение высоко-эластичности к «энтропийной силе» по меньшей мере требует дополнительных доказательств.[7, С.399]

Д. с. в различных темп-рных интервалах и для разных физич. состояний полимеров существенно различаются, что связано с особенностями механизмов релаксационных процессов, доминирующих в данных условиях. Наиболее ярко релаксационный характер Д. с. проявляется в области структурных переходов, напр.[16, С.362]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Бартенев Г.М. Физика полимеров, 1990, 433 с.
8. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
9. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
10. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
11. Виноградов Г.В. Реология полимеров, 1977, 440 с.
12. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
13. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
14. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
15. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
16. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
17. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
18. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
19. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
20. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную