На главную

Статья по теме: Формирование наноструктур

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Методы интенсивной пластической деформации могут обеспечить формирование наноструктур в различных материалах. Однако получаемый размер зерен и характер формирующейся структуры зависят от применяемого метода ИПД, режимов обработки, фазового состава и исходной микроструктуры материала. Ниже будут приведены примеры типичных наноструктур, полученных методами ИПД, обсуждаются пути получения минимального размера зерен в различных материалах, рассмотрены данные об эволюции микроструктуры в ходе интенсивных деформаций.[1, С.19]

Металлические и керамические порошки. В работе [102] исследовано формирование наноструктур при консолидации порошков Ni и керамики. Порошок N1(99,85%) получали методом газовой атомизации (размер порошинок 6 мкм), а аморфный нанопорошок SiC>2 со средним размером частиц 4,4нм методом испарения-конденсации [104]. Для удаления поглощенных паров[1, С.49]

Оба этих замечания свидетельствуют, что величины деформации, рассчитанные с помощью указанных выше уравнений, лишь примерно равны реальным степеням деформации. Более того, формирование наноструктуры при ИПД происходит под действием не только внешних, но и внутренних напряжений (см. § 1.2). Вместе с тем, между величиной последних и истинными деформациями нет жесткой связи. Подтверждением этого является формирование обычно однородной структуры по диаметру образцов, подвергнутых ИПД кручением, хотя в соответствии с выражениями (1.1) и (1.2) в центре образцов не должно происходить существенного измельчения микроструктуры. В связи с этим при исследовании процессов эволюции микроструктуры в ходе ИПД кручением часто более правильно рассматривать число оборотов, а не величину деформации, рассчитанную с помощью аналитических выражений. Это положение становится особенно важным при обработке труднодеформируемых или хрупких материалов, где возможно проскальзывание между бойками и образцом или растрескивание последнего. Для их устранения необходимо повышение приложенного давления, но это создает дополнительные технологические трудности в подборе более прочного материала бойков, оптимизации конструкции оснастки.[1, С.12]

К счастью, многие из упомянутых проблем могут быть преодолены при использовании методов обработки, названной нами интенсивной пластической деформацией (ИПД) [3, 8]. Задачей методов ИПД является формирование наноструктур в массивных металлических образцах и заготовках путем измельчения их микроструктуры до наноразмеров. Хорошо известно, что путем значительных деформаций при низкой температуре, например, в результате холодной прокатки или вытяжки [9-11], можно очень сильно измельчить структуру металлов. Однако полученные структуры являются обычно ячеистыми структурами или субструктурами, имеющими границы с малоугловыми разориентировками. Вместе с тем рассматриваемые наноструктуры являются ультрамелкозернистыми структурами зеренного типа, содержащими преимущественно болыпеугловые границы зерен [8, 12]. Создание таких наноструктур может быть осуществлено методами ИПД, позволяющими достичь очень больших деформаций при относительно низких температурах в условиях высоких приложенных давле-[1, С.6]

В сплавах, подвергнутых интенсивным деформациям, конечная структура определяется не только условиями обработки, но и исходной микроструктурой, а также фазовым составом. В однофазных твердых растворах формирование наноструктуры происходит аналогично чистым металлам, но получаемый размер зерен может быть значительно меньше. Например, в закаленных А1 сплавах после ИПД кручением средний размер зерен обычно составляет 70-80 нм [63,64]. Добавки в чистый А1 от 1 до 3 вес. %Mg приводит к уменьшению размера зерен в результате ИПД РКУ-прессованием примерно в 3 раза [44]. В многофазных сплавах существенную роль при измельчении структуры играют природа и морфология вторых фаз. Так, при интенсивной деформации двухфазного сплава Zn-22 %A1 наблюдали измельчение обеих фаз и после ИПД кручением (5 оборотов) уже при комнатной температуре сформировалась дуплексная наноструктура с размером зерен обеих а- и /3-фаз менее 100нм [65] (рис. 1.9). При наличии[1, С.23]

Можно сформулировать несколько требований к методам интенсивной пластической деформации, которые следует учитывать при их развитии для получения наноструктур в объемных образцах и заготовках. Это, во-первых, важность получения ультрамелкозернистых структур, имеющих преимущественно больше-угловые границы зерен, поскольку именно в этом случае происходит качественное изменение свойств материалов (гл. 4,5). Во-вторых, формирование наноструктур, однородных по всему объему образца, что необходимо для обеспечения стабильности свойств полученных материалов. В-третьих, образцы не должны иметь механических повреждений или разрушений несмотря на их интенсивное деформирование. Эти требования не могут быть реализованы путем использования обычных методов обработки металлов давлением, таких как прокатка, вытяжка или экструзия. Для формирования наноструктур в объемных образцах необходимым является использование специальных механических схем деформирования, позволяющих достичь больших деформаций материалов при относительно низких температурах, а также определение оптимальных режимов обработки материалов. К настоящему времени большинство результатов получено с использованием двух методов ИПД — кручения под высоким давлением и РКУ-прессования. Имеются также работы по получению нано- и субмикрокристаллических структур в ряде металлов и сплавов путем использования всесторонней ковки [16, 17 и др.], РКУ-вытяжки [18], метода «песочных часов» [19].[1, С.9]

И ФОРМИРОВАНИЕ НАНОСТРУКТУР[1, С.9]

Гл. 1. Методы деформации и формирование наноструктур[1, С.10]

Гл. 1. Методы деформации и формирование наноструктур[1, С.38]

Гл. 1. Методы деформации и формирование наноструктур[1, С.50]

Как будет показано ниже, в гл. 4, формирование наноструктур методами ИПД оказывает значительное, а иногда коренное влияние на деформационное поведение и механические свойства металлов и сплавов. Вместе с тем в процессе последующей пластической деформации происходит изменение исходного нанострук-турного состояния, причем характер этих изменений определяется схемой и условиями деформации.[1, С.147]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.

На главную