На главную

Статья по теме: Пластической деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Методы интенсивной пластической деформации могут обеспечить формирование наноструктур в различных материалах. Однако получаемый размер зерен и характер формирующейся структуры зависят от применяемого метода ИПД, режимов обработки, фазового состава и исходной микроструктуры материала. Ниже будут приведены примеры типичных наноструктур, полученных методами ИПД, обсуждаются пути получения минимального размера зерен в различных материалах, рассмотрены данные об эволюции микроструктуры в ходе интенсивных деформаций.[13, С.19]

Совершенно иной механизм нагружения цепи преобладает в процессе пластической деформации полимеров при деформациях от 30 % до нескольких сотен процентов. В данном случае цепь будет рваться под действием сил трения, существующих между цепями самой молекулы или ее цепями и другими морфологическими элементами при их динамическом сдвиге (гл. 5, разд. 5.2.5). Достигаемые напряжения вдоль оси цепи пропорциональны молекулярному или фибриллярному коэффициентам трения и скорости деформации е. Поэтому число критически нагруженных цепей будет отражать сильный рост коэффициента трения в зависимости от понижения температуры. Девис и др. [19] деформировали листы полиэтилена с высокой молекулярной массой на воздухе и регистрировали образование кислотных радикалов. Для истинной деформации In (///о), равной, например 1,1, что соответствует условной деформации 200%, концентрация кислотных радикалов возрастает от 5-Ю14 см~3 при 294 К до 1016 см~3 при 160 К. Скорость накопления радикалов d[R]/dln(///0) имеет две области переходов: одну при температурах 180—200 К и другую — начиная с 250 К и выше.[2, С.204]

Можно сформулировать несколько требований к методам интенсивной пластической деформации, которые следует учитывать при их развитии для получения наноструктур в объемных образцах и заготовках. Это, во-первых, важность получения ультрамелкозернистых структур, имеющих преимущественно больше-угловые границы зерен, поскольку именно в этом случае происходит качественное изменение свойств материалов (гл. 4,5). Во-вторых, формирование наноструктур, однородных по всему объему образца, что необходимо для обеспечения стабильности свойств полученных материалов. В-третьих, образцы не должны иметь механических повреждений или разрушений несмотря на их интенсивное деформирование. Эти требования не могут быть реализованы путем использования обычных методов обработки металлов давлением, таких как прокатка, вытяжка или экструзия. Для формирования наноструктур в объемных образцах необходимым является использование специальных механических схем деформирования, позволяющих достичь больших деформаций материалов при относительно низких температурах, а также определение оптимальных режимов обработки материалов. К настоящему времени большинство результатов получено с использованием двух методов ИПД — кручения под высоким давлением и РКУ-прессования. Имеются также работы по получению нано- и субмикрокристаллических структур в ряде металлов и сплавов путем использования всесторонней ковки [16, 17 и др.], РКУ-вытяжки [18], метода «песочных часов» [19].[13, С.9]

В зависимости от величины площадки пластичности - податливости П - судят о способности полимерного материала к пластической деформации, т.е. о его способности необратимо изменять свою форму под действием приложенного напряжения. Количественно П может быть определена по диаграмме а-6, если сопоставить значения тангенсов угла наклона касательных в точке В и точке С, т.е.[1, С.129]

Еще большие напряжения вызывают деструкцию надмолекулярной организации, включая переориентацию сегментов цепи и ламеллярных кристаллов (поворот кристаллов, наклон и проскальзывание цепей), раскрытие пустот и первые разрывы цепей. Эти процессы соответствуют пластической деформации. Как будет показано в последних главах, именно на этой стадии большая часть подведенной энергии переходит в тепло. Поскольку деформирование возобновляется почти с постоянного[2, С.41]

Ослабление при ползучести присуще не только термопластичным материалам. В качестве примера в гл. 1 приведены морфологические структуры разрушения при ползучести труб из ПВХ, подверженных воздействию различных по величине напряжений. При достаточно высоких напряжениях (0„ = = 50 МПа) имеет место небольшая деформация ползучести, а ослабление труб из ПВХ оказывается хрупким. В таком случае говорят о прочностной долговечности при хрупком разрушении (рис. 1.1). При умеренных значениях напряжения (42 МПа), действующего продолжительное время, трубы подвергаются сильной пластической деформации, т. е. в таком случае говорят о деформационной долговечности при вынужденной эластичности (рис. 1.2). При более низких значениях напряжения (а„<20 МПа) ослабления либо не наблюдается совсем в течение времени проведения эксперимента, либо действует конкурирующий механизм образования трещины при ползучести (рис. 1.3).[2, С.278]

Я. Рыхлевским недавно была опубликована теория собственных напряженных состояний, в рамках которой, в частности, дано новое решение проблемы выбора инвариантов; им же высказаны соображения о возможности применения данной теории для описания пластичности анизотропных тел. В настоящем параграфе приведено описание некоторых особенностей пластического деформирования анизотропных материалов по теории течения и деформационной теории пластичности с использованием понятия собственных напряженных состояний, введенных Я. Рыхлевским. В частности показано, как учесть отсутствие пластических деформаций при некоторых особых видах напряженного состояния, упрочнение, разупрочнение и зависимость мгновенных упругих модулей от накопленной пластической деформации, а также предложен набор опытов для нахождения определяющих функций в нелинейной области.[3, С.295]

ПА-6 в спектр кислотных радикалов Бекман и Деври установили, что 50 % всех «повреждений» происходят в слое толщиной менее 0,6 мкм от поверхности. Оставшиеся 50 % цепных радикалов получены на глубине до 3 мкм от поверхности. С учетом морфологии деградирующих полимеров, механики процесса измельчения и подвижности первичных свободных радикалов можно представить пространственное распределение вторичных радикалов. В данном случае с точки зрения прочности кристалла, по-видимому, маловероятно вытягивание и разрыв отдельных цепей ПА. Как уже рассматривалось в гл. 5, цепь ПА-6, уложенная в кристаллите более чем на 1,7 нм своей длины, будет скорее разрываться, чем вытягиваться из кристаллита. Вытягивание из поверхности разрушения целых микрофибрилл будет происходить с весьма большой вероятностью и сопровождаться разрушением межфибриллярных проходных цепей с образованием повреждений в поверхностном слое на глубине до 1 мкм. Это особенно важно для сильной пластической деформации материала перед растущей поверхностью разрушения. Перемещение свободных радикалов, конечно, вносит свой вклад в углубление слоя со следами повреждения. Тем не менее глубины поврежденного слоя, полученные в подобных экспериментах, действительно совпадают с нижними пределами размеров частиц, получаемых при механическом повреждении материала. Это свидетельствует о том, что повреждения могут вызываться механически вплоть до указанных -выше глубин.[2, С.209]

Пластическое деформирование особенно проявляется в полимерных материалах. Электронные микрофотографии, представленные в гл. 8, достаточно убедительно свидетельствуют об этом факте. Поэтому необходимо исследовать, можно ли применить метод механики разрушения, разработанный для упругих материалов, для упругопластических твердых тел и как это сделать. Хорошо известно [3—7] влияние пластического деформирования на распределение напряжения при вершине трещины. Например, при квазиупругих условиях деформирования упруго-пластический материал начинает пластически деформироваться, как только состояние напряжения удовлетворяет критерию вынужденной эластичности или течения. Пластическое деформирование начинается в области наибольших напряжений, т. е. вблизи вершины трещины; оно ограничивает составляющие напряжения пределом вынужденной эластичности aF. Для поддержания механического равновесия должны увеличиться напряжения в более отдаленных областях (до значения предела вынужденной эластичности). Таким образом, пластическое деформирование характеризуется увеличением эффективной длины трещины [3—7]. Существуют два общих метода расчета эффективного расширения трещины при пластической деформации, которые основаны соответственно на критерии вынужденной эластичности Мизеса [6] и рассмотрении aF в качестве дополнительного напряжения сжатия [7].[2, С.339]

Наличие пластической деформации в материале проявляется в трех аспектах:[2, С.340]

При комнатной температуре возрастает подвижность молекул и убывает межмолекулярное притяжение. Поэтому величина пластической деформации, приводящая к разделению[2, С.391]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
4. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
5. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
6. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
7. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
8. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
9. Белозеров Н.В. Технология резины, 1967, 660 с.
10. Амброж И.N. Полипропилен, 1967, 317 с.
11. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
12. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
13. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
14. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
15. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
16. Бартенев Г.М. Физика полимеров, 1990, 433 с.
17. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
18. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
19. Серков А.Т. Вискозные волокна, 1980, 295 с.
20. Пашин Ю.А. Фторопласты, 1978, 233 с.
21. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
22. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
23. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
24. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
25. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
26. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
27. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
28. Северс Э.Т. Реология полимеров, 1966, 199 с.
29. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
30. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
31. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
32. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
33. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
34. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
35. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
36. Колтунов М.А. Прочностные расчет изделий из полимерных материалов, 1983, 240 с.
37. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
38. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
39. Гастров Г.N. Конструирование литьевых форм в 130 примерах, 2006, 333 с.

На главную