На главную

Статья по теме: Электронные микрофотографии

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Электронные микрофотографии обнаруживают более или менее выраженную надмолекулярную структуру, зависящую от метода приготовления образцов, природы растворителя и скорости испарения. Быстрое испарение из разбавленных растворов при температурах, лежащих значительно ниже температур размягчения агрегатов, приводит к образованию надмолекулярной структуры, которую будем называть «исходной». Для этой структуры характерно наличие'нерегулярных агрегатов с диффузными границами и широким распределением по форме, размерам и расстоянию между ними (рис. 5). После отжига таких образцов при температуре около 100 °С в течение нескольких часов в них образуется надмолекулярная структура с заметно более высокой регулярностью, чем исходная. Более длительный отжиг не приводит к дальнейшему изменению структуры,[8, С.189]

Электронные микрофотографии показывают, что в полимере, закристаллизованном при сдвиге, происходит фибриллизация в направлении течения. Поверхность пленки показана на рис. 17. На снимке видны ламели, развивающиеся перпендикулярно направлению сдвиговых деформаций и уложенные вдоль направления сдвига. Как указывалось выше, можно принять, что текстура такого типа образовалась вследствие кристаллизации в условиях, когда имеет место молекулярная ориентация, степень которой различна для разных элементов структуры. На некоторых типичных образцах были проведены измерения рассеяния рентгеновских лучей под малыми углами. Во всех исследованных образцах наблюдались меридиональные рефлексы, хотя и довольно диффузные. Угловое расстояние между ними соответствует величине большого периода порядка 140— 160 А. Рассмотрение картины дифракции рентгеновских лучей под большими углами указывает, что при повышении скорости сдвига в процессе кристаллизации происходит некоторое изменение ориентации макромолекул по отношению к оси фибриллы, а именно: при высоких скоростях с осью фибриллы совпадает ось с кристалла, а при низких скоростях сдвига происходит некоторый сдвиг в сторону оси а. Другими словами, каждый дуговой рефлекс (200), который для образцов, полученных при высоких скоростях сдвига, расположен на экваторе, расщепляется на два, несколько отстоящих от экватора, для образцов, сформованных при более низких[14, С.109]

Далее, электронные микрофотографии [25] показывают, что ширина полос волосяных трещин в матрице сравнима с диаметром частиц каучука. Следовательно, энергия, поглощаемая в каучуке в областях существования волосяных трещин, намного меньше, чем в матрице, поскольку каучук характеризуется значительно более низким значением модуля, а напряжение в обеих фазах одинаковое. Дилатантная теория возрастания податливости. Ньюман и Стрелла [28], отмечая несостоятельность простой теории поглощения энергии, предположили, что частицы каучука способствуют возникновению гидростатического растягивающего напряжения в окружающем материале матрицы. Гидростатическое давление приводит к эффекту дилатансии, т. е. увеличения свободного объема, которое способствует возрастанию податливости материала и снижению хрупкости. В оригинальной работе [28] предполагается, что источником возникающего гидростатического давления служит относительная поперечная усадка, обусловленная различием значений коэффициентов Пуассона каучука (1/2) и матрицы (1/3). В дальнейшем, однако, Стрелла [34], следуя Гудьиру [14], основывается на анализе напряжений в системе упругих частиц сферической формы, находящихся в упругой матрице, которая подвергается простому растяжению.[8, С.144]

На рис. 9.19—9.21 воспроизводятся электронные микрофотографии реплик поверхностей разрушения ПА-6, полученного кристаллизацией под давлением [202]. На микрофотографиях видны стопы ламелл толщиной до 700 нм. На основании обширных исследований методами инфракрасной спектроскопии, широкоуглового рассеяния рентгеновских лучей и методами электронной микроскопии авторы данной работы пришли к выводу, что ламеллы состоят из вытянутых цепей. Согласно их предположению (рис. 9.22), трещина преимущественно может распространяться либо вдоль плоскостей (010) (в которых располагаются концы цепей, а также примеси, отторгнутые фронтом роста), либо вдоль плоскостей (002) —в слоях водородных связей ламелл. В обоих процессах не происходит разрыва связей основной цепи или водородных связей.[1, С.393]

Пластическое деформирование особенно проявляется в полимерных материалах. Электронные микрофотографии, представленные в гл. 8, достаточно убедительно свидетельствуют об этом факте. Поэтому необходимо исследовать, можно ли применить метод механики разрушения, разработанный для упругих материалов, для упругопластических твердых тел и как это сделать. Хорошо известно [3—7] влияние пластического деформирования на распределение напряжения при вершине трещины. Например, при квазиупругих условиях деформирования упруго-пластический материал начинает пластически деформироваться, как только состояние напряжения удовлетворяет критерию вынужденной эластичности или течения. Пластическое деформирование начинается в области наибольших напряжений, т. е. вблизи вершины трещины; оно ограничивает составляющие напряжения пределом вынужденной эластичности aF. Для поддержания механического равновесия должны увеличиться напряжения в более отдаленных областях (до значения предела вынужденной эластичности). Таким образом, пластическое деформирование характеризуется увеличением эффективной длины трещины [3—7]. Существуют два общих метода расчета эффективного расширения трещины при пластической деформации, которые основаны соответственно на критерии вынужденной эластичности Мизеса [6] и рассмотрении aF в качестве дополнительного напряжения сжатия [7].[1, С.339]

Явление нагружения и разрыва молекулярных нитей изучалось различными методами. В большинстве цитированных работ приведены оптические и электронные микрофотографии трещин серебра. Отдельные примеры воспроизведены на рис. 9.8—9.10. Результаты исследований формы трещин серебра методом интерференционной микроскопии обсуждаются в работах [15, 155, 177]. Приведем некоторые результаты, полученные путем измерений тепловых характеристик [31, 50, 184—186], путем анализа влияния молекулярной массы на образование трещин серебра [И, 15, 65, 79, 146, 178], методом акустической эмиссии [174, 188] и методом ЭПР [189—190].[1, С.381]

Различные виды надмолекулярной организации зависят от строения молекул, их состава, условий полимеризации, переработки, внешних условий обработки, т. е. почти от всех параметров, учитываемых при изготовлении полимеров. Размеры и формы некоторых видов надмолекулярной организации, образующихся на начальной стадии полимеризации гомополимера, показаны на примере волокнистых и глобулярных структур Уристера [21] для полиолефинов. Эти структуры получены в процессе полимеризации из газовой и жидкой фаз при низкой и высокой эффективности титановых, ванадиевых, хромовых и алюминиевых катализаторов. На рис. 2.6—2.8 воспроизводятся электронные микрофотографии образующихся таким образом полимерных структур [21]. При низкой эффективности катализатора в полипропилене формируются глобулы диаметром 0,5 мкм (рис. 2.6), а при высокой — волокна длиной в несколько микрометров (рис. 2.7). Диаметр волокна согласуется с размером боковой стороны основного каталитического кристалла и изменяется в пределах 0,37—2 мкм при изменении ширины кристалла Т1С13 в пределах 5—50 нм. Образцы полиэтилена, изготовленные с помощью катализатора Т1СЦ— —А1(изобутил)3 или других коллоидных катализаторов, имеют менее правильные поверхности кристаллических структур (рис. 2.8).[1, С.31]

Рис. 9. Электронные микрофотографии растворов полиакрилонитрила (а) и продуктов его гидролиза после 1 часа (б), 4 часов (в) и 24 часов (г) из 10~3-процентных растворов. X ХЗООО.[2, С.35]

Рис. 3.6. Электронные микрофотографии частиц этилакрилатного латекса при конверсии 15,6% (а); 38,0% (б); 45,5% (в) (Х20000).[4, С.105]

Рис. 7.3. Электронные микрофотографии частиц при сополиме-ризации БА—ММА—МАК по второму методу при концентрации полимера (X 30 000):[4, С.208]

Рис. 3.11. Электронные микрофотографии латексных частиц, образующихся при безэмульгаторной сополимериза-ции БМА и ДМАЭМА, взятых в соотношении 85: 15, при различных кон-версиях:[4, С.115]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Ахмедов К.С. Водорастворимые полимеры и их взаимодействие с дисперсными системами, 1969, 89 с.
3. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
4. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
5. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
6. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
7. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
8. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
9. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
10. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
12. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
13. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
14. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
15. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
16. Почепцов В.С. Химия и технология поликонденсационных полимеров, 1977, 140 с.
17. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную