На главную

Статья по теме: Интенсивной деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В загрузочной воронке мы начинаем медленное и в некоторой степени неустойчивое движение вниз, которое сопровождается многократно повторяющимися столкновениями с соседними гранулами и кратковременными зависаниями в своде. Это продолжается до тех пор, пока мы не достигнем зоны сужения — горловины питающего отверстия. Здесь винтовой гребень подхватывает гранулы и толкает их вперед. Он мгновенно догоняет нашу гранулу, и она начинает вращаться (при этом изменяется ее система координат). Теперь мы регистрируем свое движение относительно червяка, и поэтому кажется, что цилиндр вращается в противоположном направлении. Мы находимся в мелком канале, ограниченном гребнями червяка, его сердечником и поверхностью цилиндра, и начинаем медленное движение по каналу, сохраняя свое местоположение относительно ограничивающих канал стенок. По мере передвижения соседние гранулы нажимают на нашу гранулу со все возрастающим усилием, причем пространство между гранулами постепенно уменьшается. Большинство гранул испытывает такое же воздействие, за исключением тех, которые контактируют с цилиндром и червяком. Движущаяся поверхность цилиндра оказывает интенсивное тормозящее воздействие, в то время как трение о поверхность червяка приводит к возникновению силы трения, направленной вдоль винтового канала. Из разд. 8.13 известно, что это торможение о поверхность цилиндра является движущей силой, вызывающей перемещение частиц твердого полимера в канале червяка. Оба эти фрикционных процесса приводят к выделению тепла, возрастанию температуры полимера, и в особенности слоя, расположенного у поверхности цилиндра. В каком-то сечении температура слоя может превысить температуру плавления или размягчения полимера, и фрикционное торможение переходит в вязкое трение, т. е. твердый полимер перемещается по каналу червяка за счет напряжений сдвига, генерируемых в пленке расплава. Однако в более общем случае еще до начала сколько-нибудь значительного фрикционного разогрева экстремальные условия достигаются на тех участках, где цилиндр разогрет до температуры, превышающей температуру плавления, что ускоряет появление пленки расплава. Это означает окончание той части процесса транспортировки гранул, которая происходит в зоне питания, когда в экструдере присутствует только твердый нерасплавленный материал. К этому моменту наша гранула оказывается до некоторой степени деформированной соседними гранулами, с которыми она тесно контактирует, образуя вместе с ними достаточно прочный, хотя и деформируемый твердый блок, движущийся подобно пробке по каналу червяка. Тонкая пленка, отделяющая слой нерасплавленного полимера от цилиндра, подвергается интенсивной деформации сдвига. Разогрев твердой пробки происходит как за счет тепла, генерируе-[1, С.431]

Еще одной особенностью интенсивной деформации в сплавах является возможность развития двойникования. Например, после ИПД кручением в Mg сплаве МА8 [70] было обнаружено, наряду с сильным измельчением структуры появление большого количества микродвойников.[2, С.27]

По-видимому, в условиях интенсивной деформации сдвига переход в режим крошения или в режим качения эластического катка без пластической деформации определяется соотношением между величиной работы разрыва и величиной работы эластической деформации в условиях деформации сдвига.[4, С.366]

Рассмотрим вначале механические аспекты интенсивной деформации кручением. При деформации кручением под высоким давлением (рис. 1.1 о) полученные образцы имеют форму дисков.[2, С.10]

На основании анализа процессов эволюции микроструктуры и измерений микротвердости авторы [23] исследовали последовательность структурных превращений в процессе интенсивной деформации кручением. Они показали, что в случае исследованных материалов с высокой ЭДУ (Си, Ni) по мере увеличения степени деформации до истинной логарифмической деформации е « 2 дислокации сосредоточиваются в границах ячеек и практически отсутствуют в их теле.[2, С.31]

Суммируя представленные в данном параграфе результаты, следует подчеркнуть, что многочисленные исследования демонстрируют возможность получения наноструктур методами интенсивной деформации в различных металлических материалах, а также некоторых полупроводниках и композитах. При этом характер формирующейся наноструктуры определяется как самими материалами (исходной микроструктурой, фазовым составом, типом кристаллической решетки), так и условиями интенсивной деформации (температура, скорость, метод деформации и т. д.). В целом, снижение температуры, увеличение приложенного давления, степень легирования способствуют измельчению структуры и достижению наименьшего размера зерен.[2, С.31]

Сравнивая уравнения (11.6-19) и (11.6-2), можно прийти к выводу, что при разрушении как агломератов твердых частиц, так и капель жидкости напряжение и размер частиц играют одну и ту же роль. В обоих случаях конструкция смесителя должна включать зоны интенсивной деформации сдвига и обеспечивать многократное прохождение всех частиц смеси через эти зоны.[1, С.394]

Располагая полем скоростей и полем пористости, авторы выделили четыре области (рис. 8.13). Область D была названа зоной пробкового движения, а в области В наблюдалось поведение неподвижно закрепленного тела. Область А была названа «зоной разлома» вещества из-за интенсивной деформации, которая происходила в этом месте. И, наконец, область С была названа зоной свободного движения.[1, С.236]

При этом анализ темнопольных изображений показал, что наноструктуры в Ge и Si характеризуются нормальным распределением по размерам зерен со средним размером 24 и 17 нм соответственно. Изучение электронограмм, снятых с площади 2мкм2, выявило концентрические кольца, состоящие из многочисленных точечных рефлексов. В то же время в Ge и Si при интенсивной деформации кручением под давлением 7ГПа, происходили полиморфные превращения. Так, в Ge наблюдали появление тетрагональной фазы с кристаллической решеткой типа P4s2i2[74],a в Si — кубической фазы с кристаллической решеткой типа 1аЗ [75].[2, С.30]

Деформация кручением под высоким давлением. Установки, в которых деформация кручением была проведена под высоким давлением, впервые были использованы в работах [20, 21]. Их конструкция является развитием известной идеи наковальни Бриджмена [22]. В первых работах эти установки были использованы для исследования фазовых превращений в условиях интенсивных деформаций [20], а также изучения эволюции структуры и изменения температуры рекристаллизации после больших деформаций [23]. Новым и принципиально важным моментом явились доказательства формирования наноструктур с неравновесными болынеугловыми границами зерен при использовании интенсивной деформации кручением [3, 8, 12], что позволило рассматривать этот метод как новый способ получения наноструктурных материалов.[2, С.10]

В сплавах, подвергнутых интенсивным деформациям, конечная структура определяется не только условиями обработки, но и исходной микроструктурой, а также фазовым составом. В однофазных твердых растворах формирование наноструктуры происходит аналогично чистым металлам, но получаемый размер зерен может быть значительно меньше. Например, в закаленных А1 сплавах после ИПД кручением средний размер зерен обычно составляет 70-80 нм [63,64]. Добавки в чистый А1 от 1 до 3 вес. %Mg приводит к уменьшению размера зерен в результате ИПД РКУ-прессованием примерно в 3 раза [44]. В многофазных сплавах существенную роль при измельчении структуры играют природа и морфология вторых фаз. Так, при интенсивной деформации двухфазного сплава Zn-22 %A1 наблюдали измельчение обеих фаз и после ИПД кручением (5 оборотов) уже при комнатной температуре сформировалась дуплексная наноструктура с размером зерен обеих а- и /3-фаз менее 100нм [65] (рис. 1.9). При наличии[2, С.23]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
3. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
4. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
5. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
6. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
7. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
8. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
9. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
10. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную