На главную

Статья по теме: Индивидуальных соединений

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Всего существует 75 индивидуальных соединений, которые относятся к ПХДД и отличаются положением атома хлора, а также 135 различных ПХДФ. Все они являются индивидуальными представителями диоксиноподобных соединений. Однако только семь представителей из 75 ПХДД обладают высокой токсичностью. Для этих условий важно наличие хотя бы одного хлор/бромзаместителя в положении 2, 3, 7, 8 ароматического кольца. Только 10 из 135 возможных представителей ПХДФ с присутствующими хлор/бромзаместителями в положении 2, 3, 7 или 8 относительно ароматического кольца также имеют высокую токсичность. Помимо этих представителей к диоксиноподобным соединениям можно отнести и 209 представителей ПХБФ, из которых 13 проявляют повышенную токсичность. Важно отметить, что эти соединения имеют 4 или 5 замещенных атомов хлора только с одним заместителем в ортоположении. Все ПХБФ, вероятно, имеют схожие свойства, однако токсичность этих соединений по сравнению с ПХДД и ПХДФ была изучена меньше.[13, С.158]

Основной способ инициирования Р. п.— применение индивидуальных соединений, способных к разложению на свободные радикалы в определенной температурной области, или систем, действующих по принципу индуцированного генерирования свободных радикалов (см. Инициирование полимеризации). Радиационная полимеризация — наиболее универсальный из методов синтеза полимеров в отсутствие специально введенных инициаторов, но она может протекать как по радикальному, так и по ионному механизму. Фотополимеризация, применимая к ряду ненасыщенных мономеров, характеризуется невысоким квантовым выходом. Его величина определяется природой мономера и используемой об-[12, С.131]

Основной способ инициирования Р. п.— применение индивидуальных соединений, способных к разложению на свободные радикалы в определенной температурной области, или систем, действующих по принципу индуцированного генерирования свободных радикалов (см. Инициирование полимеризации). Радиационная полимеризация — наиболее универсальный из методов синтеза полимеров в отсутствие специально введенных инициаторов, но она может протекать как по радикальному, так и по ирнному механизму. Фотополимеризация, применимая к ряду ненасыщенных мономеров, характеризуется невысоким квантовым выходом. Его величина определяется природой мономера и используемой об-[16, С.131]

В реактор 4, представляющий собой цилиндрический аппарат, снабженный рубашкой, мешалкой с экранированным электроприводом и обратным холодильником 5, из мерника 1 подают заданное количество бромистого октила. Через люк из переносного бункера 2 загружают в реактор порош- Бромистый кообразное олово и подают октил Олово триэтиламин (3—4% от количества реакционной смеси) и иод (0,3—0,4%). Люки закрывают и включают мешалку. Содержимое реактора нагревают до 170—180 °С и выдерживают при этой температуре в течение 4—5ч. Затем охлаждают реакционную массу до 20 °С и направляют ее на фильтр 5 для отделения непрореагировавшего олова. Фильтрат азотом передавливают в куб 7 для отгонки избытка бромистого октила. Твердый остаток — непроре-агировавшеё олово — на фильтре дважды промывают ацетоном. Ацетон после промывки передавливают в сборник 6, а промытое олово снова используют в производстве. Отгонку бромистого октила в кубе 7 ведут при 60—80 °С и остаточном давлении 4— 5 мм рт. ст. Бромистый октил собирают в сборнике 10 и потом снова используют в синтезе октилбромидов олова. После отгонки бромистого октила смесь октилбромидов олова и твердого остатка — комплексной соли триэтиламина, выпадающей в осадок во время отгонки, охлаждают в кубе до 20—30° С и направляют на фильтр 8 для отделения твердого осадка. Осадок (комплексную соль) растворяют в ацетоне и собирают в сборник 6, а фильтрат — смесь октилбромидов олова — в случае необходимости направляют на разгонку для выделения индивидуальных соединений. Смесь октилбромидов олова представляет собой жидкость от Желтого до коричневого цвета, в которой содержится 70—80%-диоктилоловодибромида, 15—25% октилоловотрибромида и 5—10% триоктилоловобромида. Содержание олова в смеси 22,5—23,5%; плотность dz\ = 1,360—1,390; т. заст. от 0 до —6 °С.[7, С.309]

Ни одно из доступных индивидуальных соединений не предотвращает быстрого автоокисления ot-метилстирола, особенно при[1, С.737]

Трудно ожидагь полной универсальности от отдельных индивидуальных соединений и поэтому на практике применяются, обычно, различные сочетания добавок, по при этом возникает ряд новых задач, а именно:[10, С.85]

При малых величинах п (частая сетка) синтез основан на применении индивидуальных соединений с точно заданной величиной п, поэтому при близкой к 100 %-ной конверсии величина Л/с в таких сетках задана с достаточной точностью.[3, С.180]

Потенциометрическое титрование применяют для определения не только индивидуальных соединений, но и их смесей. Используют как прямое, так и обратное титрование. Большие возможности для раздельного определения органических веществ кислого и основного характера в разнообразных смесях дает сочетание потенциометрического титрования с неводными растворителями [4, 5, 6].[8, С.16]

Из сказанного следует, что низшие члены олигомерных рядов м. б. легко получены или выделены в виде химически индивидуальных соединений, в то время как для высших олигомерных гомологов идентификация связана со значительными трудностями. Это побудило нек-рых ученых предложить для последних особый термин — плойномеры. Однако деление области низкомолокулярных полимеров на олнгомеры п плейномеры, по-видимому, искусственно п не имеет достаточной физич. основы, т. к. современные методы синтеза и разделения смесей гомологов позволяют получать в виде химически индивидуальных веществ О. со значительными степенями полимеризации (п = = 25—30, среднечислонная мол. масса 2000 — 3000), и не имеется принципиальных ограничений для получения индивидуальных соединений более высокой мол. массы.[11, С.229]

Из сказанного следует, что низшие члены олигомерных рядов м. б. легко получены или выделены в виде химически индивидуальных соединений, в то время как для высших олигомерных гомологов идентификация связана со значительными трудностями. Это побудило нек-рых ученых предложить для последних особый термин — плейномеры. Однако деление области низкомолекулярных полимеров на олигомеры и плейномеры, по-видимому, искусственно и не имеет достаточной физич. основы, т. к. современные методы синтеза и разделения смесей гомологов позволяют получать в виде химически индивидуальных веществ О. со значительными степенями полимеризации (га = = 25—30, среднечисленная мол. масса 2000—3000), и не имеется принципиальных ограничений для получения индивидуальных соединений более высокой мол. массы.[15, С.227]

Для обеспечения эквивалентности между двумя мономерами класса 1 иногда используют специальные приемы. Так, при получении полиамидов вместо индивидуальных соединений применяют стехиометрпч. соль диамина и дикарбоновой к-ты.[11, С.432]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Амброж И.N. Полипропилен, 1967, 317 с.
3. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
4. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Андрианов К.А. Технология элементоорганических мономеров и полимеров, 1973, 400 с.
8. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
9. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
10. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
11. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
12. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
13. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
14. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
15. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
16. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
17. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.

На главную