На главную

Статья по теме: Малоугловое рассеяние

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Малоугловое рассеяние может быть двух типов. В одном случае на рентгенограмме наблюдается постепенное уменьшение ин тенсивности до нуля (при 0=1—2°). Обычно такие непрерывны* кривые интенсивности получаются в результате дифракции на бес порядочной системе больших частиц. В другом случае на ректге лоградшах вкдны макпшумы, соответствующие большим периодам. Наличие отдельных рефлексов на ма^оугловой рентгенограмме характеризует уже порядок в расположении больших тастяц На малоугловых рентгенограммах полимеров наблюдаются об? типа рассеяния: непрерывное распределение интенсивности IT отдельные рефлексьь[1, С.116]

Малоугловое рассеяние рентгеновских лучей и нейтронов используется для анализа гетерогенности полимерных смесей и блоксо-полимеров, а совместно с ТЭМ дает возможность определить размеры доменов дисперсной фазы, например бутадиена (5 % мае.) в хлоро-преновой матрице. Однако наличие наполнителей в смесях может вызвать определенные трудности в получении результатов.[2, С.578]

Методы изучения гомогенности и морфологии смесей полимеров включают изучение процессов стеклования, оптическую, флуЫ ресцентную, атомно-силовую и электронную микроскопию, малоугловое рассеяние рентгеновских лучей и нейтронов и ядерный магнит-* ный резонанс. Все эти методы применимы при исследовании полимеров в массе, однако могут быть некоторые ограничения, связанные с присутствием наполнителей [4]. Наиболее информативными оказываются методы микроскопии, так как контрастирование фаз дает воз-[2, С.574]

Если задача ограничивается только анализом ММР, наиболее употребительным методом становится сейчас хроматография, в силу ряда присущих ей специфических удобств [22, 24]. Сведения о размерах и конформациях макромолекул дают другие транспортные и гидродинамические методы, но их обычно приходится градуировать по таким абсолютным методам, как рассеяние света, малоугловое рассеяние рентгеновых лучей или медленных нейтронов и др. Эти методы, в конечном счете, позволяют определить (Я2)|/2 или (г2) или характеристические отношения типа Я2/М, но ММР при этом никуда не исчезает, а при анализе с позиций математической физики в основе соответствующих методов всегда оказываются уравнения общего типа (I. 15), хотя в отдельных случаях реальная процедура их обращения довольно проста. При этом, однако, никогда не следует забывать, что за редкими исключениями (го-модисперсные полимеры за пределами биологических систем — большая редкость [21]) конкретные параметры, скрытые за символом IB (I. 15), в разных методах усредняются по М по-разному и поэтому сравнение их значений следует производить, принимая во внимание характер усреднения.[4, С.52]

Второй метод определения размеров кристаллитов - метод малоугловой дифракции рентгеновских лучей, когда углы 6 составляют примерно 1.. .2°. В этом случае возникают интерференции дальних порядков, то есть лучей, отражающихся не плоскостями кристаллической решетки, а целыми кристаллитами. Однако результаты измерений не всегда можно однозначно интерпретировать, поскольку малоугловое рассеяние рентгеновских лучей целлюлозой представляет суммарный эффект рассеяния от пустот в волокне и участков с различной плотностью. Методики исследования и расшифровки рентгенограмм нуждаются в уточнении и совершенствовании.[3, С.242]

Малоугловое рассеяние поляризованного света (поляризационная дифрактометрия) удобно еще по двум обстоятельствам:[4, С.345]

Малоугловое рассеяние рентгеновских лучей зависит только от порядка чередования аморфных и кристаллических областей, обладающих различными электронными плотностями, и от наличия микропор, распределенных в матрице твердого полимера.[7, С.123]

Малоугловое рассеяние рентгеновских лучей — это метод, использующийся при определении размеров таких морфологических образований, как ламели, сферолиты, отдельные фазы и поры; при изучении макромолекул в растворах (анализ размера и формы частиц); исследовании разбавленных или густых систем коллоидных частиц, набухших полимеров, деформации и отжига полимеров, разветвленных полимеров.[7, С.131]

Малоугловое рассеяние может быть двух типов. В одном случае на рентгенограмме наблюдается постепенное уменьшение интенсивности до нуля (при 0=1—2°). Обычно такие непрерывные кривые интенсивности получаются в результате дифракции на беспорядочной системе больших Частиц. В другом случае на рентгенограммах вкдньг максимумы, соответствующие большим периодам. Наличие отдельных рефлексов на ма^оугловой рентгенограмме характеризует уже порядок в расположении больших таспщ. На малоугловых рентгенограммах полимеров наблюдаются оба типа рассеяния: непрерывное распределение интенсивности я отдельные рефлекш.[8, С.116]

Малоугловое рассеяние рентгеновских лучей[9, С.50]

Рис. Малоугловое рассеяние на протонированных звездах в D-толуоле (С = 1% мае.) при 20°С: A). (PS^C,» (t) и димеры (2); В). (PSJA,, (1) и гибриды (3). Показаны подгоночные функции (2)[10, С.217]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
2. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
3. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
4. Бартенев Г.М. Физика полимеров, 1990, 433 с.
5. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
6. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
7. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
10. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
11. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
12. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
13. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
14. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
15. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
16. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
17. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
18. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
19. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
20. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
21. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную