На главную

Статья по теме: Наполнителей используют

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В качестве антифрикционных наполнителей используют дисперсные порошки неорганических веществ, имеющих слоистую кристаллографическую решетку. К ним относятся графит, дисульфид молибдена (природный), диселениды и дихалькогениды металлов, а также нитрид бора, йодистый кадмий и другие. Из органических продуктов используют фторопласт-4, полиэтиленовые воска, а также жидкие антифрикционные добавки. Нередко один АПМ содержит несколько разновидностей антифрикционных наполнителей.[7, С.165]

Для повышения прочности и улучшения технологических свойств термостойких резин в них вводят различные наполнители. Для фторкаучуков в качестве наполнителей используют белые и углеродные сажи, а также силикаты и фториды кальция, магния и др. [19, с. 257].[1, С.506]

В качестве полупроводников могут быть использованы диэлектрики, наполненные токопроводящими наполнителями: не-а ынческнми порошками, графитом, техническим углеродом В качестве металлических наполнителей используют серебро, никель и другие металлы, не подвергающиеся окислению и не вызывающие химического разрушения полимеров Механизм электропроводимости наполненных систем (полупроводников и диэлектриков) более близок к туннельному, хотя не исключается возможности эмиссии электронов от частицы к частице. Туннельное сопротивление определяется толщиной прослойки полимера, которая зависит от содержания и размера частиц, их распределения и других факторов С уменьшением толщины прослойки сопротивление снижается. Его значение зависит также от диэлектрической проницаемости полимера, разделяющего частицы при уменьшении проницаемости оно снижается В области слабых полей сопротивление практически не зависит от напряжения, а при высоких значениях напряжения сопротивление уменьшается[5, С.386]

Особенностью вулканизатов из хлорсульфополиэтилена является их высокая прочность при обычных температурах без применения усилителей. Наполнители увеличивают твердость и прочность при повышенных температурах, улучшают технологические свойства смесей. В качестве наполнителей используют мел, белую сажу.[2, С.217]

Фенолоальдегидные прессовочные материалы — это композиции на основе новолачных и резольных олигомеров с органическими и неорганическими наполнителями и другими добавками (отвердители, красители, смазывающие вещества). Органическими порошкообразными наполнителями служат древесная мука, молотый кокс, графит. В качестве минеральных наполнителей используют кварцевую муку, каолин, молотую слюду и др. К волокнистым наполнителям относят хлопковый линт, асбест, стекловолокно, тканевую крошку, бтвердителями являются уротропин, известь; смазывающими веществами — стеарин, стеараты.[3, С.60]

Окрашивание смол в растворе или жидких смол проводят чаще всего в сигма-кнетерах или бегунковых смесителях. Процесс используется преимущественно для получения и окрашивания так называемых макроструктурных масс. Это формовочные массы с длинноволокнистыми или рублеными усиливающими наполнителями (рис. 5.8). Так, например, в качестве наполнителей используют текстильные или текстильные рубленые волокна (типы 71 и 74) и асбестовые шнуры (тип 16 по DIN 7708). В ко-кнетерах без последующей сушки получают так называемые мокрые пресс-массы (премиксы), например, из растворенных в стироле полиэфирных смол, стекловолокна, наполнителей, красящих средств и т. д. (типы 801 и 803 по DIN 16911). В пластосмесителях из растворов фенольных смол и длинного стекловолокна получают формовочные массы с исключительно высокими механическими свойствами, реологические .свойства которых можно изменить до требуемых путем последующей сушки. В бегунковых смесителях получают и окрашивают массы, содержащие менее чувствительные к механическим нагрузкам наполнители, такие, как текстильные рубленые волокна, целлюлозное волокно.[8, С.299]

Наиболее рациональным путем получения эластомерных материалов с заданными магнитными свойствами является создание композиционных материалов, состоящих из каучуков и различных наполнителей, в том числе ферромагнитных. Такие материалы могут сочетать высокоэластические свойства, присущие эластомерам, с магнитными свойствами наполнителей. В качестве наполнителей используют порошки из ферромагнитных, ферримагнитных материалов и редкоземельных элементов. Такие наполнители, как и любые ферромагнетики, по своим магнитным свойствам разделяют на маг-нитотвердые и магнитомягкие. В соответствии с тем, какие наполнители использованы при их изготовлении, все эластичные магнитные материалы также можно разделить на два класса: магнитомягкие и магнитотвердые резины. Особое внимание при использовании ферромагнитных наполнителей должно быть обращено на их удельную поверхность (или размер частиц), так как уровень магнитных свойств композитного материала существенно зависит от этого показателя.[4, С.75]

В качестве отвердителей для компаундов изоляционного на-!ачения обычно применяют различные ангидриды, позволяю-ие получать компаунды с меньшей вязкостью и хорошими ди-юктрическими характеристиками. Для компаундов холодного ^верждения применяют первичные амины (ГМДА или ПЭПА), для ускорения отверждения ангидридами в некоторых случаях эбавляют небольшие количества ускорителей (например, АДФМ). В качестве наполнителей используют неорганические атериалы, причем наиболее часто применяется молотый кварц, исло пластификаторов и модификаторов для компаундов очень глико и их химическая природа весьма разнообразна.[6, С.157]

ПМ и ПФ выпускают в пром-ети в виде 50 —70%-них р-ров в различных мономерах или олитомерах (ненасыщенные полиэфирные смолы), т. е. в виде продуктов, пригодных к непосредственному использованию. Большую часть ПМ и ПФ используют в качестве связующих для армированных пластиков, гл. обр. стеклопластиков. Ненасыщенные полиэфирные смолы (без армирующих наполнителей) используют для заливки различных деталей радио- и электротехнич. оборудования (см. Компаунды полимерные), медицинских, биологических и музейных препаратов, изготовления кабельных муфт, листовых и стержневых заготовок для галантерейных изделий. Полиэфирные смолы находят широкое применение для приготовления полиэфирных лаков и эмалей, используемых для отделки мебели, корпусов радиоприемников и телевизоров и др. Кроме того, эти смолы применяют для пропитки древесины и пористых металлич. отливок с целью их герметизации, а также для пропитки катушек трансформаторов и обмоток алектрич. машин.[9, С.359]

В качестве армирующих наполнителей используют элементарные волокна, пряди, жгуты, нити, ткани различной структуры, войлокоподобные материалы (холсты, маты), бумагу, шпоны.[10, С.102]

В качестве армирующих наполнителей используют элементарные волокна, пряди, жгуты, нити, ткани различной структуры, войлокоподобные материалы (холсты, маты), бумагу, шпоны.[12, С.99]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кирпичников П.А. Альбом технологических схем основных производств промышленности синтетического каучука, 1986, 225 с.
3. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
4. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
7. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
8. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
9. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
13. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную