На главную

Статья по теме: Определяется структурой

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Движение ионов в полимерах определяется структурой, тепловым движением макроцепей, наличием специфических взаимодействий ионов с молекулами полимера. При рассмотрении механизма перемещений ионов в полимерной матрице можно использовать энергетическую схему рис. 14. В положении / ион обладает энергией Е\ и находится в связанном состоянии. Для высвобождения ему необходимо сообщить энергию А? после диссоциации, т. е. срыва иона с места закрепления. В этом случае подвижность иона определяется выражением:[11, С.47]

Скорость солевой вулканизации определяется структурой сложноэфирного мономера и перечисленные выше метакрилаты располагаются в ряд: ЭКМЭМАК > ИКМЭМАК > МКБЭМАК > > ЭКБЭМАК. Для получения оптимальных скоростей вулканизации в качестве сомономера рекомендуется ИКМЭМАК, однако для быстровулканизующихся каучуков БНЭФ более подходит[1, С.407]

Микроструктура полимерной цепи определяется структурой переходного состояния для реакции роста цепи. Различия в структуре переходного состояния, приводящие к различным способам построения полимерной цепи, в значительной степени определяются отталкиванием химически несвязанных групп в переходном состоянии, т. е. различного рода стерическими эффектами. Теоретическое рассмотрение этой проблемы представляет значительные трудности, так как требует учета влияния тонких деталей (структуры переходного состояния на энергию переходного состояния. Простейший подход к этой проблеме основан на энергетической оценке различных структур полимерной цепи. При этом предполагается, что реализуется та структура переходного состояния, которая приводит к энергетически наиболее выгодной структуре полимерной цепи [21, 22]. Так, например, из трех структур цепи полихлорвинила[15, С.93]

Стойкость вулканизатов тиоколов к растворителям определяется структурой мономерного звена, содержанием серы в нем, а также степенью разветвленности. Лучшую стойкость к растворителям имеет тетрасульфидный тиокол А. Вулканизаты тиоколов ДА, FA и ST имеют более высокую степень набухания в бензоле, однако по набуханию в других растворителях они близки к тиоколу А. Вулканизаты довольно хорошо противостоят действию разбавленных соляной и серной кислот.[1, С.569]

Морфология (характер расположения) цепей в кластерах •определяется структурой полимера на молекулярном уровне, т. е. химическим строением его повторяющегося звена, молекулярной массой, степенью разветвленное™ макромолекул, наличием сетки зацеплений. Если подвижность цепи, молекулярная масса линейных полимеров или расстояние между узлами для сетчатых достаточна пысоки для образования складчатой кон-форманин, то кластер характеризуется складчатой морфологией. Если же подвижность цепи ограничена (например, из-за большого числа полярных групп или сетки зацеплений), то наиболее вероятной конформацией внутри кластера будет конфор-мация вытянутой цепи.[4, С.54]

Температура стеклования при увеличении молекулярной массы сначала растет, а затем при определенном значении М1<р ^ГсАШ-»-0. Величина М^ определяется структурой полимера и соответствует молекулярной массе механического сегмента. Поэтому иногда механическим сегментом считают такую длину макромолекулы (молекулярную массу), начиная с которой Гс практически не зависит от степени полимеризации, т е. ^Гс/гШ-^-О. Для термодинамически гибких полимеров МКР составляет несколько тысяч (для полибутадиена—1000, поли-винилхлорида—12000, полиизобутнлена—1000, полистирола— 40000). Поэтому для полимеров с М~105—106 Тс практически не зависит от молекулярной массы, т. е. кинетическая гибкость макромолекул одинаковой природы достаточно высокой молекулярной массы практически одинакова.[4, С.100]

Химическая стойкость, значение обменной емкости, селективность, механическая прочность и другие свойства ионитов зависят от природы и концентрации ионогенных групп, структуры макромолекул, прочности связи между полимером и ионо-генной группой. Поскольку макромолекулы ионитов имеют пространственное строение, растворитель вызывает только набухание ионита, степень которого определяется структурой полимера, природой и концентрацией ионогенных групп и составом раствора электролита. Как правило, иониты поликонденсационного типа имеют худшие показатели химической стойкости, чем иониты полимеризацион-ного типа.[2, С.96]

С другой стороны, о существовании субмикротрещин в нагруженных полимерах известно уже давно, с тех пор как ленинградская школа [17, 18, 27, 28] применила для их изучения методы рассеяния рентгеновских лучей. Подобные суб-микротрещины были обнаружены в ПЭ, ПП, ПВХ, ПВБ, ПММА и ПА-6. Авторы данных работ отметили две существенные особенности образования субмикротрещин [28]. Во-первых, субмикроскопические трещины имеют конечные размеры, причем их поперечные размеры практически не зависят от продолжительности действия нагружения, величины напряжения и температуры (табл. 8.3). Во-вторых, поперечный размер субмикротрещин определяется структурой полимера. Для ориентированных кристаллических полимеров поперечный размер субмикротрещин совпадает с диаметром микрофибрилл; для неориентированных аморфных полимеров, имеющих глобулярную структуру, данный размер совпадает с диаметром глобул [28].[3, С.254]

Свойства полимерных материалов можно регулировать, изменяя их состав. Наибольшее влияние на механические свойства оказывают пластификаторы, наполнители, армирующие материалы Введение пластификаторов способствует снижению температуры стеклования полимера (что расширяет температурную область эксплуатации полимерных материалов), но снижает модуль упругости и прочность, увеличивает долю пластических деформаций н текучесть в вязкотекучем состоянии. Влияние наполнителей на прочность полимеров неоднозначно. С одной стороны, введение твердых частиц в полимерную матрицу создает на границе раздела полимер — наполнитель дополнительные перенапряжения (дефектные зоны), которые снижают прочность. Уровень дефектности определяется прочностью связи полимер — наполнитель. С другой стороны, наполнитель изменяет структуру: в наполненных материалах увеличивается доля слабых адсорбционных связей и повышается ориентация макромолекул в направлении действия нагрузки, что способствует росту прочности. В стеклообразном состоянии наполнители снижают прочность, в высокоэластическом —• проявляется их упрочняющая роль; в последнем случае зависимость прочности от содержания наполнителя описывается немонотонной кривой с максимумом при оптимальной концентрации фсгт, которая определяется структурой полимера (в основном гибкостью) к физико-химическими свойствами наполнителя (размером частиц, свойствами их поверхности). Чем ниже гибкость полимера к больше активность наполнителя (например, меньше размер частиц), тем меньше фонт- Снижение прочности при концентрациях наполнителя, превышающих оптимальную, обусловлено уменьшением ориентирующего влияния наполнителя. Это объясняет тот факт, что кристаллизующиеся полимеры или сильно сшитые резины (эбониты) не упрочняются при наполнении.[4, С.348]

Скорость растворения конкретных полимеров в значительной стапени определяется структурой твердого те-,ла и в первую очередь его предысторией. Действительно, скорость набухания аморфных полимеров, как отмеча-.лось ранее, зависит от того, был ли получен образец полимера через стадию однофазного раствора или через стадию студня.[10, С.216]

Согласно другой точке зрения, стереоселективность действия катализатора определяется структурой растущего концевого звена,[1, С.111]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
3. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
10. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
11. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
12. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
13. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
14. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
15. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
16. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
17. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
18. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
19. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
20. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
21. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
22. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
23. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.
24. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную