На главную

Статья по теме: Ориентированного состояния

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для ориентированного состояния полимера характерно расположение большинства линейных макромолекул, кристаллитов и других более крупных структурных образований параллельно или почти параллельно оси волокна. .Для полиэфирного волокна, кроме того, большое значение имеют вид и совершенство кристаллитов, степень кристалличности, уровень упорядоченности и величина внутренних напряжений в аморфной фазе.[5, С.119]

Возникновение ориентированного состояния связано с появлением продольной вязкости и некоторых необычных релаксационных эффектов. С чисто кинетических позиций описанные приемы генерирования или сборки высокоориентированных систем связаны с реализацией продольного течения, характеризуемого продольным градиентом скорости и, соответственно, продольным коэффициентом вязкости.[2, С.220]

В расплаве полимерные цепи стремятся принять случайные кон-формации. Они приобретают такую структуру, переходя из ориентированного состояния через некоторое время, которое зависит от свойств полимера, температуры и давления. Поэтому существует такое термодинамическое состояние полимерного расплава (при Т > Те для аморфных и Т > Тв для кристаллических полимеров), для которого уравнение состояния определяется только полем гидростатических напряжений, а временные эффекты либо не наблюдаются, либо ими можно пренебречь. Таким образом, уравнение состояния имеет вид: Р — Р (V, Т).[1, С.125]

Твердые полимеры в отличие от обычных твердых тел обладают важной особенностью — способностью при больших напряжениях подвергаться так называемым вынужденно-эластическим деформациям, что приводит к возникновению ориентированного состояния полимеров. Все химические волокна и пленки находятся в этом состоянии и обладают ярко выраженной анизотропией структуры и физико-механических свойств.[4, С.104]

Штейн внимательно рассмотрел значения степени ориентации, полученные при исследовании методом ШРР одноосно-ориентирован-ных образцов [54—56]. Уилчинский [58] и Сэк [63] исследовали ориентацию неортогональных элементарных ячеек. Штейн [55] изучал и более сложную задачу, возникающую при исследовании двухосно-ориентированного состояния. Значения степени ориентации в трех направлениях, определенные на образцах полиэтиленового волокна, полученных при разной скорости вытяжки [39], представлены на рис. 3.19.[1, С.73]

Книга является пособием для изучения курсов по механике, физике и физической химии полимеров. В ней отражены наиболее важные разделы науки о полимерах: их молекулярное строение, физические состояния, полиморфные и фазовые превращения, механические, электрические, оптические и теплофизические свойства. Детально рассмотрены вопросы статистической физики полимеров, термодинамики полимерных сеток, особенности ориентированного состояния полимеров, релаксационные явления и др. 1704060000—370 ББК 22.31[3, С.2]

Возможность существования макромолекул в вытянутой-конформации приводит к появлению в полимерных кристаллах выделенного направления — кристаллографической оси с, совпадающей с направлением вытянутых конформации или, как чаще говорят, с главным, направлением, полимерных цепей. Структурная анизотропия, характеризующаяся одним выделенным направлением, существует не только, когда цепи полностью вытянуты, но и тогда, когда под влиянием растягивающего напряжения или других сил клубки хотя бы частично разворачиваются и звенья макромолекул приобретают преимущественную ориентацию. Это приводит не только к механической и оптической, но и к термодинамической анизотропии (именно ее и обнаружил в свое время Джоуль в опытах с растягиванием каучуков). Специфичность свойств полимеров с ориентированными макромолекулами (к ним относятся все полимерные волокна, и природные, и синтетические) потребовало рассмотрения особого ориентированного состояния полимеров,, которому в книге посвящена гл. XVI.[7, С.20]

Особенность ориентированного состояния заключается в том, что при ориентации полимеров разного химического строения[6, С.65]

Для предельно ориентированного состояния в отсутствие микротрещин (бездефектное капроновое волокно) теория [3.6] дает -утеор = 5- 10~23 см3. В неориентированном состоянии полимера флуктуационный объем в три раза больше, чем в предельно ориентированном, где ол = 1,7-10~23 см3, поэтому и здесь 10"~23 см3, тогда как эксперимент [5.4] дает значение[16, С.113]

Сравнительно новое направление в этой области состоит в создании ориентированного состояния при самом синтезе полимера, например путем «направленной» полимеризации твердых мономеров в виде монокристаллов, жидких полярных мономеров в электрическом поле постоянного тока **, из газовой фазы на вытянутых[8, С.458]

Теоретическая прочность полимера равна числу рвущихся химических связей* в единице поперечного сечения образца, умноженному на максимальное значение квазиупругой силы Fm химической связи**. Для предельно ориентированного состояния это определение теоретической прочности вполне точно, так как межмолекулярные связи в разрыве практически не участвуют.[9, С.142]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
5. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Бартенев Г.М. Физика полимеров, 1990, 433 с.
8. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
9. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
10. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
11. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
12. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
13. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
14. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
15. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
16. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
17. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
18. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
19. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
20. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
21. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
22. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
23. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
24. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
25. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную