На главную

Статья по теме: Полимеров естественно

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В соответствии с современными представлениями о структуре полимеров естественно было предположить наличие в растворах упорядоченных структур. Такое предположение тем более обоснованно, что иначе невозможно представить себе быстрого образования кристаллов и сферолитов из растворов.[4, С.340]

В соответствии с современными представлениями о структуре-полимеров естественно было предположить наличие в растворах упорядоченных структур. Такое предположение тем более обоснованно, что иначе невозможно представить себе быстрого образования кристаллов и сферолитов из растворов.[6, С.340]

Естественно, что агрегатные переходы полимеров, осуществляемые в технологии, могут сопровождаться и фазовыми превращениями, ориентационными эффектами, а также разнообразными реакциями в цепях макромолекул (сшиванием, деструкцией и пр.).[2, С.161]

Напряжения, возникающие при смещении цепи относительно матрицы твердого тела, могут быть также описаны с учетом понятия о коэффициенте трения мономеров ?0 [25]. Смысл такого допущения детально обсуждается Ферри [25], который также приводит перечень численных значений коэффициентов трения мономеров для многих полимеров. Естественно, коэффициенты в сильной степени зависят от температуры. Но даже если проводить сравнение при соответствующей • температуре, например при температуре стеклования каждого полимера, коэффициенты трения мономеров изменяются в зависимости от физической и химической структуры цепи на 10 порядков величины. В верхней части интервала значений получим при соответствующих каждому полимеру температурах стеклования 1740 Нс/м для ПММА, 19,5 Нс/м для ПВА и 11,2 Нс/м для ПВХ [25]. Это означает, что сегмент ПВХ, вытянутый при 80°С из матрицы ПВХ со скоростью 0,005 нм/с, преодолевает силу сдвига 0,056 нН на мономерное звено. При более низких температурах коэффициент молекулярного трения, по существу, растет пропорционально интенсивности спектра времен релаксации Я (т), причем увеличение составляет примерно от одного[3, С.145]

Таким образом, производство новолачных полимеров целесообразно концентрировать на нескольких мощных предприятиях, тогда как резольные полимеры указанного назначения должны выпускаться в непосредственной близости от потребителей полимеров. Естественно, что свойства резольных полимеров будут различаться, а это не замедлит сказаться на показателях выпускаемых заливочных пенопластов.[5, С.25]

Частичный переход ксантогената во время осаждения в мезоморфное (жидкокристаллическое) состояние является достаточно вероятным, хотя еще окончательно не доказанным. Приведенная ранее дифрактограмма малоуглового рассеяния поляризованного света, наблюдаемая при коагуляции вискозы (см. рис. 7.31), имеет большое сходство с картинами рассеяния, которое дают анизотропные растворы жесткоцепных полимеров [99]. Поэтому можно предположить, что в определенных условиях перед образованием твердой фазы ксантогенат частично может переходить в ме-зофазное состояние. Это предположение тем более обосновано, что целлюлоза относится к числу полужесткоцепных полимеров. Естественно, что переход в мезоморфное состояние, которое характеризуется образованием большого числа упорядоченных доменов, может резко изменять кинетику осаждения и характер образующихся структур. В частности, с этим явлением можно связать возникновение мелкокристаллической структуры при формовании[7, С.209]

При оценке направления механохимических превращений в смеси полимеров, естественно, недопустимо разделять физические условия механокрекинга и химическую природу компонентов. Это иллюстрируется, например, рис. 153, из которого видно различие в скорости гелеобразования и предельном содержании геля для двух смесей каучуков разной вязкости и химической природьь[8, С.191]

Исследователи, развивающие различные теории прочности твердых полимеров, естественно, должны исходить из механизмов разрушения, включающих рассмотрение как трещин разрушения, так и трещин «серебра». Между тем в последнее время появилось большое число теоретических работ по прочности твердых полимеров21' 2а, исходящих из старой гипотезы разрушения полимеров, впервые предложенной Куном еще в 1946 г. (см. стр. 102). В этих работах разрушение полимера по-прежнему рассматривается как процесс разрыва под действием напряжения и тепловых флуктуации цепей во всей массе материала, без учета разобранного выше реального механизма разрушения твердых полимеров.[9, С.101]

Анизотропия строения ориентированных полимеров, естественно, приводит к анизотропии свойств, в том числе и электрической проводимости. Из данных табл.3 следует, что у ориентированного сополимера тетрафторэтилена с фторвинилиденом электрическая проводимость вдоль направления вытяжки ух больше, чем по оси г, а у ориентированных полипропиленоксида и полифторвинилидена — наоборот. Это указывает на различную «топографию» проводящих элементов структуры ориентированных образцов полимеров и сополимеров.[11, С.63]

Естественно, что термодинамические исследования растворов полимеров и изучение структуры полимерных волокон и пленок, начатые В. А. Кар-гиным ранее, были продолжены, но с учетом развития работ по механическим свойствам полимеров. Это привело к разработке важнейшей проблемы связи механических свойств полимеров с их структурными характеристиками. Начав с изучения влияния химического строения и ориентации макромолекул на свойства волокон и пленок, В. А. Каргин впоследствии пришел к выводу о существовании надмолекулярной структуры в полимерах во всех их физических состояниях и об ее существенной роли в формировании механических свойств полимеров. Особое значение имело то, что В. А. Каргин сразу обратил внимание на плодотворность проведения исследований меха-[14, С.9]

Эти представления о строении аморфных полимеров, естественно, требуют изменения представлений о строении кристаллических полимеров. Широко распространенная в настоящее время картина строения кристаллического полимера в виде системы небольших упорядоченных областей, объединенных общими цепями, проходящими последовательно через области упорядоченно уложенных и спутанных участков цепей, не может быть справедливой в той форме, как она обычно излагается. Это вытекает хотя бы из чисто геометрических соображений: имея в виду достаточно хорошо известные размеры областей порядка и расстояния между ними, невозможно построить модель полимера, в которой цепи выходили бы из области порядка, перепутывались и затем опять образовывали области порядка. Несомненно, что одна и та же цепь проходит через несколько областей порядка и беспорядка. Однако при этом цепь не выходит за пределы пачки и по всей своей длине в основном сохраняет своих соседей.[14, С.109]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Адрианов Р.А. Пенопласты на основе фенолформальдегидных полимеров, 1987, 81 с.
6. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
7. Серков А.Т. Вискозные волокна, 1980, 295 с.
8. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
9. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
10. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
11. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
12. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
13. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
14. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
15. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
16. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
17. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.

На главную