На главную

Статья по теме: Мезоморфное состояние

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В случае коротких или жестких спейсеров, во-первых, невозможно образование аналогов К.СЦ, и, во-вторых, можно ожидать термодинамически и кинетически благоприятных условий спонтанного вовлечения их в мезофазу. Именно в таких случаях (или при локальном «сбое» порядка в линейной последовательности звеньев) можно ожидать самоупорядочивания, проявляющегося на уровне волокон как самоудлинение. В этих же системах можно ожидать облегченного перехода в мезоморфное состояние через простую параллелизацию директоров в доменах, как в жесткоцепных лиотропных макромолеку-лярных системах — со всем, что отсюда следует в практическом плане (см. также гл. XV).[4, С.390]

Ясно, что появление мезоморфной структуры в гомополимерах полифосфазена и некоторых других полимерах, с которыми проводилось сравнение, связано не с жесткоцепной структурой, как скажем, в примерах, рассмотренных Престоном, или с геометрическими факторами, как, например, в полимерах с мезоморфными боковыми группами, рассмотренных Блюмштейном в других главах этой книги. Это полимеры с гибкой основной цепью, хотя у них и имеется определенное различие в величинах вращательных барьеров по сравнению с тефлоном. Типичной чертой поведения полифосфазенов является переход из кристаллического в мезоморфное состояние, сопровождающийся большим изменением энтальпии, тогда как переход в изотропное состояние может быть менее заметен калориметрически. Мезоморфное состояние приводит к образованию в лучшем случае небольшого числа дифракционных рефлексов, которые дают информацию о межцепных расстояниях, соответствующих гексагональной упаковке. Переходу в мезоморфное состояние сопутствует начало движения основной цепи, которое усредняет потенциал межмолекулярных сил до цилиндрического. Хотя поведение некоторых отдельных полимеров обсуждалось в[8, С.338]

Частичный переход ксантогената во время осаждения в мезоморфное (жидкокристаллическое) состояние является достаточно вероятным, хотя еще окончательно не доказанным. Приведенная ранее дифрактограмма малоуглового рассеяния поляризованного света, наблюдаемая при коагуляции вискозы (см. рис. 7.31), имеет большое сходство с картинами рассеяния, которое дают анизотропные растворы жесткоцепных полимеров [99]. Поэтому можно предположить, что в определенных условиях перед образованием твердой фазы ксантогенат частично может переходить в ме-зофазное состояние. Это предположение тем более обосновано, что целлюлоза относится к числу полужесткоцепных полимеров. Естественно, что переход в мезоморфное состояние, которое характеризуется образованием большого числа упорядоченных доменов, может резко изменять кинетику осаждения и характер образующихся структур. В частности, с этим явлением можно связать возникновение мелкокристаллической структуры при формовании[6, С.209]

Беспорядок, вызываемый быстрыми вращательными движениями, является наиболее вероятной причиной отсутствия большого числа дифракционных линий у полифосфазенов в мезоморфном состоянии. Дифракционная картина транс- 1,4-полибутадиена в псевдогексагональном состоянии качественно весьма напоминает таковую двух поли-бмс-хлорфеноксифосфазенов: три резких (МО) рефлекса и диффузное плоскостное рассеяние. Расчеты структурного фактора, проведенные Суехиро и Такаянаги [43] с учетом вращения вокруг продольной оси молекулы, предсказывают именно такую дифракционную картину. Следовательно, для объяснения небольшого числа резких (МО) рефлексов, обнаруживаемых в мезоморфных полифосфазенах, совсем не обязательно, как это-ранее предполагалось [35], постулировать возмущения паракри-сталлической решетки, которые представляют собой трансляционные смещения узлов идеальной решетки. Диффузный характер плоскостного рассеяния вызывается поступательным перемещением молекул в направлении их продольных осей. К такой же картине приводят изменения паракристаллической решетки. Таким образом, мезоморфное состояние в полифосфазенах не следует представлять как паракристаллическое, но дифракционная теория паракристаллического состояния может быть полезной в определении плоскостного рассеяния.[8, С.333]

Температура стеклования сополимеров и смесей полимеров (242). Температура стеклования сополимеров карбонатов с гидроксилсодержащими эластомерами (248). Температура стеклования натриевых солей сополимеров стирола и метакриловой кислоты (80:20, мол.; Мп сополимера 7,8 • 10*) (248). Температура стеклования этиленпропиленовых терполи-меров (249). Температура плавления и другие термодинамические характеристики сополимеров и смесей полимеров (249). Температура плавления привитых сополимеров пропилена с различными мономерами (250). Температура стеклования сополимеров к-окта-децилакрилат— этилакрилат — акрилонитрил (251). Температура стеклования сополимеров винилстеарат—винилхлорид и винилстеарат — винилацетат—винилхлорид (251). Температурные переходы в сополифосфазенах типа |—NP (OCH2CF3)2—л-(ОСвН4СвН6)лг—]гс (252). Температурные переходы в поли-2-хлорциануратньш графт-сополимерах (252), Температура плавления сополимеров найлона 6,6 и найлона 6,10 с полигексаметиленте-рефталатом (найлоном 6Т) (253). Температура стеклования и коэффициенты термического расширения частично сульфонированного полистирола (253). Температуры стеклования и плавления, теплота плавления, степень кристалличности и плотность блок-сополимеров тетраметил-н-силфенилен— диметилсилоксан (253). Температура стеклования пластифицированных полимерных систем (253). Температура и энтальпия перехода в мезоморфное состояние полиорганофосфазеновых гомополимеров типа [(RO)2 RNJ/t, смесей wl [(RO)j RN]« + W2 |(R'O)2RN]n и сополимеров [(ROb (R'O)2—x RN]n (254). Температура плавления и скорость кристаллизации сополимеров найлона 66 и найлона 6 (254). Температура стеклования тройных смесей ди-2-этилгексилфталат—поливинилхлорид — сополимер бутадиен— акрилонитрил (255). Температура стеклования смесей сополимеров бутадиен — акоилонитрил и винилстеарат— винилхлорид (256). Температурные переходы[9, С.8]

Мезоморфное состояние полимеров (см. Жидкокристаллическое состояние).[1, С.400]

Этим методом успешно изучается полиморфизм, изоморфизм, мезоморфное состояние (жидкие кристаллы), исследуется зависимость скорости кристаллизации от температуры, а также аналогичная зависимость скорости полиморфного превращения.[10, С.255]

Жидкокристаллическое (мезоморфное) состояние - фазовое состояние (см.) полимера, промежуточное между кристаллическим и аморфным.[1, С.399]

ленной температуре, называемой точкой плавления (точкой кристаллизации). Однако при резком охлаждении жидкости ниже этой температуры можно получить вещество в переохлажденном состоянии, и переохлажденная жидкость может затвердеть без образования кристаллической решетки, т.е. произойдет стеклование. Температура стеклования, в отличие от температуры кристаллизации, не является точкой, а представляет собой среднюю температуру в определенном интервале. При температуре стеклования вязкость переохлажденной жидкости становится равной вязкости твердого тела (1012 Па-с). Существует также особое мезофазное (мезоморфное) состояние вещества - жидкокристаллическое.[3, С.133]

происходит переход полимера в мезоморфное состояние. Верхняя температура, при[2, С.351]

термическая предыстория изготовления образца [243]. Мезоморфное состояние[2, С.353]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
3. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
4. Бартенев Г.М. Физика полимеров, 1990, 433 с.
5. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
6. Серков А.Т. Вискозные волокна, 1980, 295 с.
7. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
8. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
9. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
10. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.

На главную