На главную

Статья по теме: Полимеров макромолекулы

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В высокоэластическом состоянии полимеров макромолекулы или их части вследствие интенсивного теплового движения меняют свое окружение, переходя от точки с одним локальным полем к точке с другим локальным полем. Если молекула меняет свое окружение достаточно быстро, то локальное поле усредняется и практически действует только поле Я0, в результате линия ЯМР-поглощения сужается. Таким.образом, по линии ЯМР можно судить о структуре вещества и характере его теплового движения. Чем интенсивнее молекулярное движение, тем меньше значения ширины линии[3, С.214]

Ориентацию в очень тонких ориентированных пленках можно исследовать также методом ЭД. Особую ценность этот метод приобретает в связи с тем, что в современных электронных микроскопах с одного и того же участка можно одновременно получать как ЭМ изображение, так и дифракционную картину. Этим методом исследованы ориентированные пленки ПЭ [66], ПАН [67], натурального каучука [68], ПВФ [69] и других полимеров (рис. II. 16). Электронограммы с участков, содержащих всего несколько отдельных микрофибрилл, по четкости рефлексов выглядят такими же (если не лучше), как рентгенограммы от хорошо ориентированных волокон и пленок, т. е. кристаллиты в этих микрофибриллах представляют собой хорошо упорядоченные образования. Анализ подобных картин показывает, что для всех полимеров макромолекулы выстроены вдоль осей микрофибрилл.[13, С.112]

Кроме того, опыт показывает, что нестабильность течения меньше у полимеров, макромолекулы которых имеют небольшое число длинноцепочечных разветвлений. Это, видимо, объясняется их склонностью к пластикации и меньшей долей эластически эффективных узлов в структурах, содержащих разветвленные макромолекулы, что способствует рассеянию энергии при деформации. Наличие в каучуках сильно структурированных (плотных) частиц также повышает стабильность течения смесей (но может ухудшать другие показатели), так как частицы нарушают регулярность сетки физических зацеплений и понижают ее способность к накоплению энергии внешней деформации. Например, при изучении вязко-упругих свойств акрилатных каучуков было показано, что разрушение структуры расплавов, усадка в формах и разбухание экструдатов резко уменьшается при введении в кау-чуки сильно сшитых частиц размером 50—300 нм [23]. При этом эластические эффекты определяются степенью структурирования частиц и мало зависят от их размеров. Аналогичные изменения, выразившиеся в уменьшении усадки и улучшении поверхности ка-ландрованных изделий, наблюдали при введении частиц плотного геля в бутадиен-нитрильные каучуки [24]. На этом же принципе основано получение специального сорта НК с улучшенными технологическими свойствами [25].[1, С.80]

В случае застекловывания полимеров макромолекулы лишены такой возможности вследствие их огромной длины. Только в идеальном кристалле по-[5, С.125]

Макромолекулы линейных полимеров (рис. 1,а) представляют собой длинные цепи с очень высокой степенью асимметрии (их поперечный размер в вытянутом состоянии соответствует поперечному размеру[4, С.27]

Огромное число полимеров можно подразделить на три основных класса, лежащих в основе принятой сейчас классификации. К первому классу относится обширная группа карбоцепных полимеров, макромолекулы которых имеют скелет, построенный из атомов углерода. Типичными представителями полимеров этого класса можно назвать полиэтилен, полипропилен, поли-изобутилен, полиметилметакрилат, поливиниловый спирт и множество других. Фрагмент макромолекулы первого из них имеет следующее строение:[5, С.19]

Ко второму классу относится не менее обширная группа гетероцепных полимеров, макромолекулы которых в основной цепи помимо атомов углерода содержат гетероатомы (например, кислород, азот, серу и др.). К полимерам этого класса относятся многочисленные простые и сложные полиэфиры, полиамиды, полиуретаны, природные белки и т.д., а также большая группа эле-ментоорганических полимеров. Химическое строение некоторых представителей этого класса полимеров выглядит так:[5, С.19]

Ограниченное набухание— процесс взаимодействия полимеров с низкомолекудярнымн жидкостями, не сопровождающийся растворением. Это наблюдается при невысоком термодинамическом сродстве полимера и растворителя, а также характерно для полимеров, макромолекулы которых соединены прочными поперечными связями в пространственную сетку. Редкие поперечные связи между макромолекулами на первой стадии набухания полимера не затрудняют диффузию в н^го молекул растворителя Поэтому в первый период наб>-ханис происходит с максимальной скоростью. Однако сольватация растворителя звеньями макромолекул, расположенными между узлами сетки, снижает их подвижность, приводит к }В1-личенню расстояний между ними, к растяжению и распрямлению макромолекул, уменьшению энтропии системы, появлению сильных механических напряжений и разрыву некоторых перенапряженных участков; скорость набухания при этом уменьшался.[6, С.397]

В первой трети XX в.— хотя по-прежнему вокруг природы полимеров (макромолекулы или коллоиды?) велись ожесточенные дискуссии — ассортимент материалов для синтетических волокон пополняется другими эфирами целлюлозы, а также полиамидами, возникает уже реальная промышленность синтетических волокон и синтетических каучуков. В последнем случае решающая роль принадлежит отечественным химикам — Ипатьеву и Лебедеву, который не только впервые синтезировал полибутадиеновый каучук, но и впервые предложил" для укрепления каучука при превращении его в резину использовать в качестве наполнителя сажу. Некоторые подробности о значимости этого фундаментального физического открытия читатель найдет в третьей части.[7, С.10]

Определяющее значение при ПХТ или ИХТ имеет структура полимерного материала [127, 128] и присутствие в плазме кислорода [129]. Кислородная плазма может быть использована не только для удаления резиста с подложек, но и для проявления специальных резистов [130]. Скорость травления органических резистов повышается при использовании УФ-излучения, которое всегда сопровождает тлеющий разряд. Наименьшая скорость травления достигается для полимеров, макромолекулы которых содержат ароматические ядра [131]. Скорость травления полимерных материалов выше в плазме, которая одновременно содержит фторированные углеводороды и кислород [126], что можно объяснить образованием связи кислорода с реакционными центрами, возникающими при отщеплении атомов водорода фтором, и последующей окислительной деструкцией. Особенно сильно это проявляется в системе CF4/O2.[8, С.61]

Макромолекулы полимеров состоят из многократно повторяю* щихся структурных единиц — элементарных звеньев.[9, С.9]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Бартенев Г.М. Физика полимеров, 1990, 433 с.
8. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
9. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
10. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
11. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
12. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
13. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
14. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
15. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
16. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
17. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
18. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
19. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную