На главную

Статья по теме: Поведение полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Па поведение полимеров в различных реакциях и их химическую стойкость влияют практически всегда имеющиеся в полимере (в результате протекания побочных реакций, сопровождающих любые полиреакции) связи, отличающиеся от связей, характерных для данного соединения. Наибольшее влияние на химическую стойкость карбоцепных полимеров оказывают случайные гетероатомные связи в главных цепях макромолекул, которые легко разрушаются, что приводит к разрыву макромолекул и значительному снижению молекулярной массы (разрыв 0,01% связей приводит к снижению молекулярной массы полимера в несколько раз) Существенно снижается химическая стойкость полимеров и при включении в макромолекуляр-ные цепи третичных и четвертичных атомов углерода. Приведем несколько примеров[7, С.163]

Реологическое поведение полимеров определяется не только-температурой, но и природой полимера, его молекулярной массой и молекулярно-массовым распределением, а также напряжением: и скоростью сдвига, при которых осуществляется течение раствора или расплава. Поэтому нельзя характеризовать реологические свойства полимера по одной величине, скажем, по вязкости. Охарактеризовать реологическое поведение полимера можно, лишь установив зависимость вязкости от напряжения или от скорости сдвига либо зависимость напряжения сдвига от скорости сдвига и получив при этом кривые течения.[4, С.157]

Механические свойства полимеров - комплекс свойств, определяющих поведение полимеров при действии на них внешних сил (см. Реология полимеров).[1, С.401]

Для полимеров в вязкотекучем состоянии закон Ньютона (6.1) неприменим, за исключением очень малых напряжений сдвига. Поэтому вязкое поведение полимеров на практике часто описывают эмпирическими формулами. Кривую течения вязких систем можно приближенно описать одной из них — формулой Ост вал ь-да-де-Вила[3, С.147]

На рис. 9.16 следует отметить одинаковую форму кривых зависимости е—Т при разных со или кривых е—со при разных Т. Кривые е—Т и е—со совершенно симметричны, что приводит к выводу об аналогии влияния температуры и частоты на механическое поведение полимеров. Это вполне естественно, поскольку, как мы видели выше, механические свойства полимера, характер его реакции на внешнее воздействие определяются критерием D=i[t. Значение критерия может изменяться как с изменением времени (частоты),так и с измеиени-ем времени релаксации (темпера-туры).[4, С.137]

До сих пор рассматривалось поведение полимера при относительно медленных изменениях величины напряжения или деформации. На практике детали из пластмасс нередко испытывают резко возрастающие нагрузки (например, ударные), поэтому необходимо знать поведение полимеров и в этих условиях. Результаты определения ударной прочности полипропилена в значительной мере зависят как от целого ряда структурных параметров, так и от геометрических размеров испытываемых образцов и метода их нагружения. Обычно образец подвергают изгибу или растяжению, а мерой прочности материала является количество работы, затраченной на разрушение образца.[6, С.106]

Однако даже дериватография — наиболее информативный метод термического анализа, позволяющий одновременно с термогравиметрическим осуществлять и дифференциальный термический анализ, — не позволяет по результатам лабораторных исследований однозначно предсказывать поведение полимеров в реальных условиях. Так, несмотря на то, что определенные типы ФС, например смолы, содержащие фрагменты нафтола или л-фенилфенола, по данным ТГА имеют более высокую термостойкость по сравнению с обычными ФС, они менее устойчивы в условиях абляции, по-видимому, из-за недостаточной механической прочности [1]. Таким образом, к вопросу прогнозирования поведения полимера в реальных условиях следует подходить очень осмотрительно — прогнозирование может быть надежным лишь при условии, что будут учтены все термохимические и физические воздействия на полимер.[5, С.101]

Поведение полимеров в электрическом поле характеризуется его лектричсскнми свойствами. Способность полимера пропускать лектрическнй ток при приложении электрического напряжения[7, С.368]

Характерное поведение полимеров при их пиролизе позволяет правильно подойти к выбору оптимальных условий для получения воспроизводимого состава пиролизата. Как показали работы [15, 16]!, наиболее стабилен состав пиролизатов карбоцепных полиме-[12, С.18]

В ряде работ поведение полимеров при вытяжке было сопоставлено с деформационным поведением металлов [33—35]. Сравнивая поведение полимера при вытяжке с поведением металлической проволоки, попытаемся объяснить различия в структуре образцов, вытянутых при комнатной температуре и при 90°. Для металлов известно [36—38], что холодное вытягивание проволоки сопровождается ее упрочнением, которое тормозит развитие пластической деформации. В случае вытягивания при повышенной температуре упрочнение снимается и протекание процесса пластической деформации облегчается. В связи с изложенным можно предположить, что при вытяжке полиэтилена при 20° в кристаллитах возникает явление, аналогичное упрочнению в металлах. Так как деформация кристаллитов при этом затруднена, скалываются, по-видимому, оченьпеболыние (возможно краевые) части кристаллита. Поскольку эти части кристаллита остаются связанными проходными цепями с большей частью, в полимере возникают фибриллы, неоднородные по сечению. Неоднородность сечения фибрилл, с одной стороны, приводит к сильному уменьшению среднего размера кристаллита в направлении Н110 и к уменьшению интенсивности малоуглового рефлекса, с другой стороны,— к появлению микропор между фибриллами, обусловливающих интенсивное экваториальное рассеяние под малыми углами (рис. 2, а, б). Вы-, тяжка при 90°, когда влияние упрочнения уменьшается, сопровождается скольжением по плоскостям, параллельным направлению НП02. Процесс скольжения приводит к более однородному сечению фибрилл и, следовательно, к уменьшению интенсивности мало углового экваториального рассеяния, а также к большей толщине фибрилл. Разумеется, что большая однородность фибрилл по сечению в этом случае обусловлена также процессом рекристаллизации, о котором будет сказано ниже.[24, С.347]

Если считать, что поведение полимеров винилового ряда при деполимеризации зависит главным образом от присутствия или отсутствия водородного атома при третичном атоме углерода, то следует ожидать, что поли-изобутилен будет количественно распадаться до мономера. В действительности продукты его пиролиза представляют собой сложную смесь углеводородов, в какой-то степени подобных получаемым из полиэтилена; для этой смеси характерен непрерывный набор молекулярных весов, по крайней мере до 500 [39J. Однако эти продукты содержат около 20% мономера.[23, С.70]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
6. Амброж И.N. Полипропилен, 1967, 317 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
9. Бартенев Г.М. Физика полимеров, 1990, 433 с.
10. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
11. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
12. Малышев А.И. Анализ резин, 1977, 233 с.
13. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
14. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
15. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
16. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
17. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
18. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
19. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
20. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
21. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
22. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
23. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
24. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
25. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
26. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
27. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
28. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
29. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
30. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
31. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
32. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
33. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
34. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
35. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
36. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.

На главную