На главную

Статья по теме: Механическое поведение

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Механическое поведение сетчатых полиизоциануратов, содержащих крсм-нийорганические межузловые фрагменты, уже было продемонстрировано выше (см. рис.71). На рис.79 показана зависимость модуля упругости поли-изоциануратных сеток от числа повторяющихся звеньев полидиметилсилок-сановых цепей, связывающих узлы. Модуль упругости таких сеток перекры-[2, С.288]

Механическое поведение реальных полимерных систем, как правило, невозможно охарактеризовать одним временем релаксации или запаздывания. Лучшим приближением к действительности являются модель Вихер-та [188], обобщающая уравнение Максвелла, и обобщенная модель Кельвина — Фойхта, разработанная Александровым и Лазуркиньш [164]. Модель Вихерта вполне применима к линейным полимерам, особенно для описания процесса релаксации напряжения.[8, С.42]

Обратим внимание еще раз на механическое поведение полиизоциану-етной сетки с линейными кремнийорганическими фрагментами с п = 6,2. ри таких размерах линейных цепей начальное напряжение о0, примерно (впадает с а0 для вязкоупругого материала (7,5 МПа), но механическое пове-;нис коренным образом отличается от него: напряжение быстро рслаксирует \ небольшую величину в начальный момент времени, но затем спад напря-гния практически прекращается, т.е. материал ведет себя как упругий стек-юбразный полимер*.[2, С.289]

Величина Е, которая полностью определяет механическое поведение идеально упругих несжимаемых материалов, зависит от природы тела, а также от температуры и других параметров его состояния. По характеру упругой деформации различают модули растяжения, сдвига, изгиба и т. д. Ими часто пользуются при сопоставлении поведения различных полимеров и оценке влияния на него температуры, времени и других факторов. Закон Гука справедлив только до достижения некоторого предельного значения напряжения (предел упругости), выше которого нарушается постоянство -=Е и появляется остаточная деформация.[7, С.356]

Другим интересным примером деформационного поведения на-номатериалов является механическое поведение Ti, подвергнутого ИПД кручением [58]. Поскольку образцы имели размеры около 10мм в диаметре, для их исследования были использованы испытания на изгиб. Полученные результаты позволили определить пределы текучести стт, предел прочности аъ и максимальную величину прогиба Д [58].[3, С.197]

Интересны результаты динамических исследований [328] влияния скорости деформации и температуры на механическое поведение при сжатии наноструктурных Си и Ni, полученных РКУ-прессованием, которые показали, что вид истинных кривых «напряжение-деформация» зависит как от скорости деформации, которая изменялась в широком диапазоне от 0,001 до примерно 4000 с"1, так и от температуры испытаний (рис. 5.5,5.6). Напряже-[3, С.195]

Таким образом, несмотря на то, что определенная часть материала в пре-;елах одного и того же образца обладает величинами модуля, характерными ;ля переходной зоны, механическое поведение является упругим, как у сте-ол или резин, а не вязкоупругим, характерным для всех полимеров в пере-ддной области.[2, С.291]

При снятии нагрузки модель Кельвина постепенно возвращается к первоначальному состоянию, т. е. она обладает упругим последействием, или эластическим восстановлением. Эта модель качественно описывает механическое поведение многих реальных материалов и в том числе мягкой вулканизованной ненаполнен-лой резины. Существенно, что с помощью модели Кельвина нельзя описать релаксацию напряжения.[6, С.20]

На рис. 9.16 следует отметить одинаковую форму кривых зависимости е—Т при разных со или кривых е—со при разных Т. Кривые е—Т и е—со совершенно симметричны, что приводит к выводу об аналогии влияния температуры и частоты на механическое поведение полимеров. Это вполне естественно, поскольку, как мы видели выше, механические свойства полимера, характер его реакции на внешнее воздействие определяются критерием D=i[t. Значение критерия может изменяться как с изменением времени (частоты),так и с измеиени-ем времени релаксации (темпера-туры).[1, С.137]

Как известно, если каждое зерно пересекается примерно одной дислокацией в секунду, то этим нельзя объяснить высокое значение предела текучести в рамках представлений о формировании дислокационных скоплений. По этой причине наиболее подходящей моделью, объясняющей механическое поведение нанострук-турных материалов, является модель, основывающаяся на механизме изгиба дислокаций [342]. Согласно этой модели необходимым условием для начала пластической деформации является принятие дислокационными петлями формы полуокружности. Критическое напряжение, при котором выполняется данное условие, выражено уравнением [117][3, С.193]

Полученные результаты важны для понимания природы деформационного упрочнения при больших деформациях (стадия IV), обнаруженных для многих материалов. Так, некоторые одинаковые черты наблюдаются в деформационном поведении нанострук-турной Си и обычной Си на стадии IV. Среди них высокое напряжение течения, отсутствие деформационного упрочнения и низкая скоростная чувствительность [217]. Кроме того, в работах [11, 217] при больших деформациях крупнокристаллических материалов также сообщалось о формировании отдельных болынеугловых границ зерен. На стадии IV интенсивно исследовалось механическое поведение многих металлических материалов, однако изучению структуры формирующихся границ уделялось мало внимания.[3, С.194]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
2. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
3. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
4. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
5. Бартенев Г.М. Физика полимеров, 1990, 433 с.
6. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
7. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
8. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
9. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
10. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
11. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
12. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
13. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
14. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
15. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
16. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
17. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
18. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
19. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
20. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
21. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
22. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
23. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
24. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
25. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
26. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
27. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную