На главную

Статья по теме: Предельных состояний

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Рис. Н.2. Семейство кривых предельных состояний при двухосном напряженном состоянии (OiXJz — главные напряжения, 0(о)—предел текучести при одноосном нагружении) и различных значениях параметра qK:[1, С.286]

В качестве примера для иллюстрации предельных состояний полимера рассмотрим диаграмму (рис. 11.1) нагрузка—деформация для полимера при различных температурах (либо при различных скоростях деформации). Кривая / соответствует хрупкому разрушению образца, при котором наблюдаются лишь упругие деформации. В этом случае разрывное напряжение 0Р равно пределу прочности полим-ера. Кривая 2 соответствует разрушению полимера выше температуры хрупкости Гхр в нехрупком (стеклообразном) состоянии, при котором разрушению предшествует вы-нужденноэластическая деформация. Последняя развивается в полимере при достижении предела вынужденной эластичности ав [11.6; 11.7]. При переходе напряжения через значение сг=ав об-[1, С.283]

В качестве примера для иллюстрации предельных состояний полимера (состояний, в которых происходит разрушение) рассмотрим диаграмму нагрузка — деформация полимера (рис. 4.3) при различных температурах (или при различных скоростях деформации). Кривая 1 отвечает хрупкому разрушению образца, при котором разрушению предшествуют лишь упругие деформации. В этом случае разрывное напряжение сгхр равно прочности полимера. Кривая 2 отвечает разрушению полимера выше температуры хрупкости Тхр — в нехрупком стеклообразном состоянии, при котором разрушению предшествует вынужденная высокоэластическая деформация, развивающаяся в полимере при достижении предела вынужденной высокоэластичности ов. При переходе напряжения через значение сгв образец теряет устойчивость: при малом приращении напряжения происходит большое приращение высокоэластической деформации. В этом случае под прочностью полимера понимается предел вынужденной высокоэластичности. Разрывное напряжение Ор несколько больше вв, так как в процессе вытяжки полимер упрочняется. Материал в этом случае характеризуется двумя предельны-[2, С.62]

Таким образом, при механическом подходе описание прочностных свойств сводится к оперированию понятием предельных состояний и к системе расчетов условий потери устойчивости изделиями из тех или иных материалов. Основная задача механики разрушения — определить те предельные критические условия, при которых наступает разрушение. Соответствующие теории называют теориями предельных состояний. К ним относятся теории максимального нормального напряжения, максимального удлинения, предельного значения упругой энергии и другие, более сложные. В этих теориях разрушение рассматривается как критическое событие, наступающее при достижении предельного состояния (предельной поверхности разрушения), которое описывается в общем случае комбинацией компонент тензора деформаций и тензора напряжений.[2, С.63]

Таким образом, при чисто механическом подходе на основе понятий механики сплошных сред или с учетом молекулярного строения твердых тел описание прочностных свойств сводится к оперированию понятиями предела прочности, предельных состояний и к системе расчетов потери устойчивости изделий из тех или иных материалов. Основная задача механики разрушения — определить те предельные критические условия, при которых наступает разрушение. Соответствующие теории называют теориями предельных состояний. К ним относятся теории максимального нормального напряжения, максимального удлинения, предельного значения упругой энергии и другие, более сложные. В этих теориях разрушение рассматривается как критическое событие при достижении предельного состояния (предельной поверхности разрушения), которое описывается в общем случае комбинацией компонентов тензора деформаций и тензора напряжений.[1, С.284]

Механическая концепция. В основе механич. концепции лежит определение условий разрушения или появления иластич. деформаций для различных напряженных состояний по значениям характеристик П., полученным для простых видов напряженного состояния. Напряженное состояние в нек-рой точке тела характеризуется тензором напряжений, состоящим в общем случае из шести независимых компонент. Если известны значения всех компонент тензора, можно рассчитать нормальные и касательные напряжения, действующие на любую плоскую площадку, проходящую через рассматриваемую точку. Разрушение происходит при различных комбинациях значений компонент тензора напряжений; каждая из этих комбинаций определяет предельное (критическое) состояние материала. Критерием П. является функция, описывающая все предельные состояния при различных видах напряженного состояния; геометрически критерий П. представляют в виде поверхности предельных состояний в пространство напряжений (предельных поверхностей). Существует несколько теорий предельных состояний, определяющих форму предельных поверхностей,— теории максимального нормального напряжения, максимального удлинения, предельного значения упругой энергии деформирования и др.[3, С.113]

Рис. 4.4. Семейство кривых предельных состояний при двухосном напряженном состоянии (01><Г2, ffj — предел текучести при одноосном нагружении) и различных значениях параметра qk:[2, С.64]

Температуропроводность 254, 258 Теория предельных состояний 284 Теория Кроссленда и Ван-дер-Гоффа 122[1, С.390]

Квазиравновесные характеристики существенны также при рассмотрении совокупности режимов установившегося течения р-ров и расплавов с различными у. Зависимость т от у характеризует набор предельных состояний среды, каждому из к-рых отвечает нек-рая постоянная степень изменения ее свойств, определяемая выбором т или у.[3, С.173]

Квазиравновесные характеристики существенны также при рассмотрении совокупности режимов установившегося течения р-ров и расплавов с различными у. Зависимость т от у характеризует набор предельных состояний среды, каждому из к-рых отвечает нек-рая постоянная степень изменения ее свойств, определяемая выбором т или -у-[6, С.173]

Изменение структуры полимерных систем, являющееся внутренней причиной В. а. и сопутствующих эффектов, происходит во времени, вследствие чего все эти явления имеют тиксотроппый характер. По мере развития деформации происходит постепенно углубляющееся разрушение исходной структуры системы; этот процесс завершается выходом на режим установившегося течения, к-рому отвечает динамич. равновесие процессов восстановления и разрушения структурных связей. Поэтому В. а., экспериментально оцененная при различных скоростях и напряжениях сдвига, характеризует конечные (предельные) степени тиксотропного разрушения структуры, реализуемые при данных механич. и темп-рных условиях деформирования. Кривая течения в области структурной вязкости описывает совокупность таких предельных состояний полимерной системы при различных напряжениях. При этом области наибольшей ньютоновской вязкости отвечает течение с условно неразрушенной структурой (точнее — структурой, изменения в к-рой не удается зафиксировать вис-козиметрич. методами), а области наименьшей ньютоновской вязкости — течение системы с полиостью разрушенной структурой, так что дальнейшее возрастание напряжения уже не может привести к еще более глубоким структурным превращениям.[4, С.286]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
3. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
4. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
5. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
6. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную