На главную

Статья по теме: Предельное напряжение

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Чтобы оценить предельное напряжение, которое полимер может выдержать, не разрушаясь, рассчитывают теоретическую прочность. Наиболее просто это сделать для кристаллического тела с известными параметрами кристаллической решетки и известной энергией связей в решетке. Например, чтобы определить теоретическую прочность кристалла поваренной соли, умножим энергию ионных связей в кристаллической решетке Na+Cl~ на число таких связей в единице поперечного сечения образца, рассчитаем работу разрушения кристалла, а затем и напряжение, необходимое для осуществления этой работы. Для кристалла NaCl получим значение напряжения около 2000 МПа. Для определения реальной прочности следует испытать экспериментально специально приготов-[6, С.194]

Таким образом, значение амако представляет собой, по существу, предельное напряжение, выше которого нарушается равновесие и происходит разрушение твердого тела, т. е. амако представляет собой теоретическое значение механической ПРОЧНОСТИ Оте0р . Рис. ПО. Зависимость W и сг от Дифференцируя (Х.23) по Г и[11, С.414]

Если для характеристики прочности материала взять за основу его предельное напряжение сдвига (а это дает некоторые экспериментальные и теоретические преимущества перед традиционными методами испытания на разрыв, сжатие, изгиб, надрыв, продавливание и т. д.), то с уменьшением количества воды в системе целлюлозное волокно — вода упрочнение очень близко к экспоненциальной функции от концентрации сухого вещества [14]. При малых концентрациях вещества (до 6—12%) экспериментально не удается установить отклонения от этой функции. При больших концентрациях начинает играть видную роль стерический фактор: волокна мешают друг другу занять пространственно наиболее выгодное положение, и тесный контакт поверхностей не может возникнуть. Чем меньше жесткость волокна, тем ближе к идеальному положению они размещаются.[14, С.245]

Сопротивление материала разрыву определяют, как правило, по деформационным кривым. Это предельное напряжение, при котором образец разрывается. Такое определение общепринято и поэтому обычно говорят о пределе прочности. Значения прочности, полученные таким образом,очень велики; для твердых полимеров они лежат в диапазоне от 500 до 1000 кГ1см2> Однако механическая прочность проявляется только начиная с определенного значения молекулярного веса. С увеличением степени полимеризации прочность материала сначала повышается, а затем при « = 600 приобретает постоянное значение. Зависимость прочности полимеров от их молекулярного веса представлена в общем виде на рис. 98.[7, С.221]

Сопротивление материала разрыву определяют, как правило, по деформационным кривым. Это предельное напряжение, при котором образец разрывается. Такое оппепеление обшеппипято и поэтому обычно говорят о пределе прочности. Значения прочности, полученные таким образом,очень велики; для твердых полимеров они лежат в диапазоне от 500 до 1000 кГ/см2. Однако механическая прочность проявляется только начиная с определенного значения молекулярного веса. С увеличением степени полимеризации Прочность материала сначала повышается, а затем при /г —600 приобретает постоянное значение. Зависимость прочности полимеров от их молекулярного веса представлена рис. 98.[10, С.221]

В обоих случаях (как при зависании, так и при образовании трубок) материал должен быть уплотнен настолько, чтобы достигнутый уровень прочности (предельное напряжение лавинного движения) был достаточным для выдерживания веса зависшего сыпучего материала. Следовательно, в уплотненном сыпучем материале возникают нарушения движения (особенно при неограниченно высоком пределе текучести), и они зависят не только от свойств материала, но и от геометрии загрузочного устройства, что оказывает влияние на распределение усилий в системе.[1, С.234]

Помимо объективных характеристик озонного растрескивания широкое применение (особенно в США и Франции) находит условная балльная система оценки степени растрескивания. В качестве показателей озоностойкости используют также предельные значения различных параметров, например предельное напряжение и предельное относительное удлинение, ниже которых растрескивание якобы не происходит.[2, С.132]

При введении наполнителя (особенно волокнистого) в полимеры частицы наполнителя образуют цепочечные структуры, соединяющиеся в пространственный каркас, обладающий значительной упругостью. При наложении напряжения сдвига такие системы сначала не текут, т. е. напряжение сдвига растет, а скорость течения остается нулевой, как это показано на рис. 11.1 (кривые3 и 4). Возникает некоторое предельное напряжение сдвига — предел текучести, после которого система течет либо как ньютоновская, либо как неньютоновская жидкость (соответственно кривые 3 и 4). Полимеры, течение в которых начинается при любом напряжении сдвига, называют вязкими; полимеры, обладающие предельным напряжением сдвига, ниже которого течение не возникает, называют пластичными.[6, С.159]

Объектами исследования являются концентрированные дисперсии ТУ в низкомолекулярном углеводороде и в растворах полимера. Структурообразование изучают по изменению механических свойств. Прочность углеродной Р0 и углерод-эластомерной Рк структур характеризуют предельным напряжением сдвига. Скорость образования структур определяют кондуктометрически: максимальные значения электропроводности и предельное напряжение сдвига Рм указывают на завершение процесса структурообразования в дисперсиях и соответствуют квазиравновесному состоянию системы.[8, С.476]

По данным Лонга [27], при малых осевых напряжениях, прежде чем начинается выгрузка материала, отношение радиального напряжения к осевому будет определяться коэффициентом Пуассона v (vaa — это напряжение, которое необходимо приложить для предотвращения радиального расширения прессуемого материала, которое могло бы произойти, если бы существовала возможность для его свободного расширения). Как только достигается предельное напряжение, этот коэффициент определяется с помощью предельной функции Куломба, и в дальнейшем наблюдается более или менее линейное увеличение радиального и осевого напряжений.[1, С.239]

Механический подход как основа различных инженерных теорий, применяемых для расчета прочности образцов различных форм, различных деталей машин и изделий, находящихся в слож-нонапряженном состоянии, характеризуется тем, что разрушение рассматривается как результат потери устойчивости образцов или изделий, находящихся в поле внешних и внутренних напряжений [11.2—11.5]. Считается, что для каждого материала имеется определенное предельное напряжение (или комбинация компонентов тензора напряжения), при котором изделие теряет устойчивость и разрывается. Это напряжение принимается за критерий прочности материала или изделия.[3, С.283]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
5. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
6. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
7. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Ахмедов К.С. Водорастворимые полимеры и их взаимодействие с дисперсными системами, 1969, 89 с.
10. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
13. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
14. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
15. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
16. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
17. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
18. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
19. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
20. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
21. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
22. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
23. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную