На главную

Статья по теме: Расположении макромолекул

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При решении вопроса о форме и взаимном расположении макромолекул ответ в первую очередь следует искать, используя структурные методы и методы непосредственного наблюдения молекул. Небольшая разрешающая способность световой микроскопии (максимум 200 А) не дает возможности использовать ее при исследовании структуры полимерных веществ, хотя и величины молекул их огромны. Трудно оценить характер расположения и конфигурацию цепной молекулы полимера по всей длине ее и при использовании структурного метода, поскольку величины расстояний, получаемые из структурного анализа, невелики. Лучшим является, по-видимому, электронно-микроскопический метод, нашедший большое использование при исследовании высокомолекулярных веществ. Применение электронного микроскопа при исследовании высокомолекулярных веществ позволило увидеть отдельные макромолекулы [1J, размеры которых оказались в пределах разрешения электронного микроскопа, а также исследовать и элементы «вторичной» структуры высокомолекулярных веществ.[14, С.110]

Возникновение дальнего порядка во взаимном расположении макромолекул, т. е. способность к кристаллизации, определяется регулярностью строения полимерных цепей. Известно, что в макромолекуле элементарные звенья и заместители могут располагаться в определенной последовательности и быть определенным образом ориентированы в пространстве (изо-тактические, синдиотактические и другие типы полимеров, имеющих регулярную первичную структуру). Если же присоединение носит статистический характер (наряду с присоединением по типу "голова к хвосту" присоединение "голова к голове" или "хвост к хвосту"), а заместители не имеют преимущественной ориентации в пространстве, то такие полимеры имеют нерегулярное строение и относятся к группе атактических. Полимеры этого типа могут находиться только в аморфном состоянии.[1, С.142]

В аморфных полимерах нет полной хаотичности в расположении макромолекул. Ближний неустойчивый порядок у полимеров более совершенен, чем у аморфных низкомолекулярных веществ. Аморфные полимеры - самые упорядоченные из аморфных веществ. У полимеров в аморфном состоянии уже возникают определенные элементы надмолекулярной структуры с довольно высокой степенью упорядоченности, недостаточной однако для образования трехмерной кристаллической решетки. «Антиэнтропийное» стремление к самоупорядочению заложено в самой природе полимеров и сыграло важную роль в появлении жизни на Земле. Возникшие в результате самоупорядочения сравнительно простые образования из полимерных молекул (белков, полисахаридов и других биополимеров) постепенно усложнялись, приобрели способность к обмену веществ, передаче наследственности, дифференциации составных частей по структуре и функциям. Так из неживой природы возникло «живое вещество» (Вернадский) и появились живые существа. Таким образом, возникновение жизни - естественный этап самоорганизации материи, реализующийся в определенных условиях.[9, С.134]

Развитие представлений о гибкости цепей полимеров, накопление большого экспериментального материала по изучению их структур привели к созданию иных представлений о взаимном расположении макромолекул в полимере. Так, аморфный каучукоподобный полимер стдлн рассматривать как совокупность очень длинных, гибких, перепутанных между собой цепей, которые под влиянием теплового движения звеньев непрерывно изменяют свою форму. Модель кристаллического полимера предусматривала сосуществование в нем кристаллических ц аморфных областей, причем принималось, что одна цепь может проходить через ряд кристаллических и аморфных областей. Согласно этой модели, в аморфных областях участки цепей могут взаимно перепутываться.[5, С.143]

В остальном ориентированные некристаллические и кристаллические полимеры имеют много общего. Полимеры и в том, и в другом состоянии обладают твердостью, анизотропией свойств и значительной упорядоченностью в расположении макромолекул. В тех и других образуются надмолекулярные структуры и обнаруживаются явления, обусловленные существованием этих структур. Одним из характерных различий процессов ориентации в этих двух типах полимеров является возможность непрерывного их осуществления в аморфном полимере и скачкообразность этого процесса[2, С.184]

Кристаллизующиеся эластомеры имеют большую прочность по сравнению' с некристаллизующимися, это обусловлено возникновением кристаллических структур в эластомерах, когда деформация обеспечивает достаточное упорядочение в расположении макромолекул как основную предпосылку для начала кристаллизации.[4, С.194]

Если при ассоциации регулярно построенных макромолекул в пачки создаются условия для правильной укладки не только полимерных цепей, но и боковых заместителей, то возникает трехмерный порядок во взаимном расположении частиц. Таким образом, необходимое и достаточное условие для кристаллизации полимера - правильная взаимная укладка как цепей макромолекул, так и боковых заместителей. Дальний порядок во взаимном расположении макромолекул обусловлен как определенным координационным порядком (т. е. правильным расположением их центров тяжести), так и ориентационным порядком (т.е. одинаковой ориентацией цепей в кристалле).[1, С.142]

В настоящее время можно считать твердо установленным микрогетерогенное строение ориентированных аморфно-кристаллических полимеров. С помощью рентгенографии под малыми углами установлено закономерное чередование вдоль оси ориентации участков с различной плотностью (так называемые большие периоды). Рентгенография под большими углами показывает, что в более плотных участках макромолекулы уложены в кристаллическую решетку, а в менее плотных такой упорядоченности в расположении макромолекул нет. Большие периоды были впервые обнаружены Гессом и Киссигом по наблюдению рентгеновских меридиональных слоевых рефлексов в области малоугловой дифракции. Согласно их представлениям, в ориентированном полимере чередуются кристаллические области, разделенные аморф-, ными участками. При этом, период .чередования оказывается равным экспериментально наблюдаемому большому периоду. Одна и та же макромолекула поочередно проходит через несколько кристаллических и аморфных участков.[2, С.198]

При взаимодействии образца с монохроматическим пучком рентгеновских лучей возможны два случая: от образца с кристаллической структурон рентгеновские лучи рассеиваются когерентно без изменения длины волны, т.е. рассеивание сопровождается дифракцией рентгеновских лучей; от образца с нерегулярной структурой, т е. содержащего аморфные н кристаллические области рассеяние "происходит иекогерентио н сопровождается изменением длины волны. На этом основано использование рентгеноструктурного анализа для оценки структурной упорядоченности в расположении макромолекул и их частей При дифракции рентгеновских лучей появляются дифрагированные пучкн результат интерференции вторичного рентгеновского излучения, возникающего при взаимодействии первичного излучения с электронными оболочками атомов (рис 1.24). Дифрагированные лучн будут интерферировать (усиливаться), если выполняется условие Брэгга— Вульфв-[7, С.87]

В результате действия водородных и межмолекулярных сил макромолекулы полимеров, так же как и молекулы низкомолекулярных соединений в конденсированном состоянии, вступают во взаимодействие друг с другом и образуют агрегаты различной степени сложности и с разным временем жизни. Строение агрегатов зависит от химического состава взаимодействующих мономерных знсньсв макромолекул, числа и размера атомов или групп, условий (температура, давление, среда и др.) Наиболее устойчивы структуры, в которых число межмолекулярных и водородных связей максимально В ряде случаев отдельные макромолекулы объединяются во вторичные образования, вторичные— в образования третьего и четвертого порядка Физическая структура полимерных тел, обусловленная различными видами упорядочения во взаимном расположении макромолекул, вмазывается надмолекулярной структурой.[7, С.48]

Для стеклообразного состояния характерны ближний порядок в расположении макромолекул и сильно ограниченная сегментальная подвижность.[7, С.233]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
6. Амброж И.N. Полипропилен, 1967, 317 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
10. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
11. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
12. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
13. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
14. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
15. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
16. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
17. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
18. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
19. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
20. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
21. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
22. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную