На главную

Статья по теме: Равновесной структуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При охлаждении вещества время релаксаиии увеличивается очень быстро, перегруппировки молекул сильно замедляются и для установления равновесной структуры требуется значительно больше времени. При понижении температуры и кратковременном пребывании вещества в новых температурных условиях его структура и объем оказываются неравновесными, они сохраняют способность, изменяться во времени. Достижение равновесной величины удельного объема во времени называется релаксацией объема.[2, С.183]

При охлаждении вещества время релаксации увеличивается очень быстро, перегруппиоовки молекул сильно замедляются и для установления равновесной структуры требуется значительно больше времени. При понижении температуры и кратковременном пребывании вещества в новых температурных условиях его структура и объем оказываются неравновесными, они сохраняют способность изменяться во времени. Достижение равновесной величины удельного объема во времени называется релаксацией объема. -[4, С.183]

В полярных эластомерах существование временных узлов сетки очевидно, так как полярные группы образуют локальные поперечные связи. Чем выше полярность полимеров, тем медленнее происходит установление его равновесной структуры. В полимерах,[1, С.167]

При нагревании с разными скоростями отожженных образцов, имеющих одинаковую тепловую предысторию, пики будут тем выше, чем больше скорость нагревания, ибо при этом замороженная в образце структура в большей степени отличается от равновесной структуры ПВА при температуре размягчения. Поэтому чем больше скорость нагревания, тем выше по температурной шкале располагается область аномального поглощения теплоты. Изучение неравновесных процессов в области размягчения при выдержке образцов при каждой данной температуре в течение длительного[1, С.268]

Термодинамич. неравновесность С. с. приводит к тому, что при постоянной темп-ре Готж с течением времени структура стекла изменяется, стремясь к равновесной (явление структурной релаксации), с соответствующим изменением свойств (линия ГД). Достижение равновесной структуры практически возможно лишь в узком температурном интервале, когда Готж меньше Тс на 15—20 °С.[10, С.251]

Термодинамич. неравновесность С. с. приводит к тому, что при постоянной темп-ре TOIV( с течением времени структура стекла изменяется, стремясь к равновесной (явление структурной релаксации), с соответствующим изменением свойств (линия ГД). Достижение равновесной структуры практически возможно лишь в узком температурном интервале, когда ?'0тж меньше Т<. на 15—20 °С.[8, С.251]

При достаточно медленном охлаждении полимера можно по~-лучить его в равновесном состоянии при температуре ниже температуры стеклования (точка Е на рис. 72), Необходимое для этого время тем больше, чем ниже температура. Так, по даш*ыдг работы6 для установления равновесной структуры высокомолекулярного полистирола при G(f С требуется 3 ч (по данным работы6— 17 ч, что более правдоподобно). При более низких темпе-[2, С.184]

При достаточно медленном охлаждении полимера можно по~-лучить его в равновесном состоянии при температуре ниже температуры стеклования (точка Е па рис. 72). Необходимое для этого время тем больше, чей ниже температура. Так, по даниыдг работы6 для установления равновесной структуры высокомолекулярного полистирола при 60° С требуется 3 ч (по данным работы6— 17 ч, что более правдоподобно). При более низких темпе-[4, С.184]

При понижении темп-ры роль колебаний и энтропийного фактора в установлении равновесия в решетке снижается. При Т = О К равновесная структура кристалла определяется минимумом потенциальной энергии решетки (с точностью до величины эффектов пулевых колебаний, влияние к-рых на установление равновесной структуры кристалла, состоящего из больших молекул, незначительно). Структура кристалла, отвечающая минимуму его потенциальной энергии, должна с большой точностью совпадать со структурой его, соответствующей абсолютному нулю томи-р. Внутреннюю энергию кристаллич. вещества можно рассчитать, используя известные потенциальные функции вида[7, С.505]

При понижении темп-ры роль колебаний и энтропийного фактора в установлении равновесия в решетке снижается. При Т = О К равновесная структура кристалла определяется минимумом потенциальной энергии решетки (с точностью до величины эффектов нулевых колебаний, влияние к-рых на установление равновесной структуры кристалла, состоящего из больших молекул, незначительно). Структура кристалла, отвечающая минимуму его потенциальной энергии, должна с большой точностью совпадать со структурой его, соответствующей абсолютному нулю темп-р. Внутреннюю энергию кристаллич. вещества можно рассчитать, используя известные потенциальные функции вида[9, С.503]

воздуха (закаленный), находится дальше от равновесного состояния и плавится при температуре на 4—5°С ниже, чем полимер, полученный при медленном снижении температуры. Для сообщения такому закаленному образцу равновесной структуры его подвергают отжигу (длительной выдержке при заданной температуре), очень медленно охлаждая.[5, С.447]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
4. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
5. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
6. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
7. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
8. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
9. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
10. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную