На главную

Статья по теме: Регулирования структуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Интересным методом регулирования структуры является метод введения в расплав полимера искусственных зародышей, которые становятся центрами кристаллизации. Ими могут бьп-ь различные органические вещества, нерастворимые в полимере, плавящиеся при более высоких температурах, чем сам полимер, и химически не взаимодействующие с ним, например индиго, ализарин и т. д. При этом можно получить разнообразные надмолекулярные структуры одного и того же полимера, так как они зависят от формы введенных кристалликоп. Так, введение 1 % тонкодисперсного индиго в расплав полипропилена при экструзии приводит к образованию пленок с однородной медкосфералитной структурой. Пленки, полученные при тех же условиях в отсутствие искусственных зародышей, состоят из крупных сферолитов с четкими границами раздела. Первые обладают вынужденной эластичностью, вторые разрушаются Хрупко. Аналогичные данные получены для изотактиче-ского полистирола и гуттаперчи,[3, С.239]

Интересным методом регулирования структуры является метод введения в расплав полимера искусственных зародышей, которые становятся центрами кристаллизации. Ими могут быть различные органические вещества, нерастворимые в полимере, плавящиеся при более высоких температурах, чем сам полимер, и химически не взаимодействующие с ним, например индиго, ализарин и т. д. При этом можно получить разнообразные надмолекулярные структуры одного и того же полимера, так как они зависят от формы введенных кристалликоп. Так, введение 1% тонкодасперсного индиго в расплав полипропилена при экструзии приводит к образованию пленок с однородной мелкосферолитной структурой. Пленки, полученные при тех же условиях в отсутствие искусственных зародышей, состоят из крупных сферолитов с четкими границами раздела. Первые обладают вынужденной эластичностью, вторые разрушаются Хрупко. Аналогичные данные получены для изотактцче-ского полистирола и гуттаперчи.[7, С.239]

Со структурными особенностями волокон и с методами регулирования структуры в процессе формования волокна связан ряд других свойств их, таких, как способность к накрашиванию, равномерность свойств в поперечном срезе и вдоль нити, способность к сохранению извитости, приданной при обработке, и т. п. Но подробное рассмотрение этих вопросов отвлекло бы от основной проблемы, обсуждаемой в данном случае, — превращений, происходящих при переработке полимеров через растворы.[9, С.282]

Анионная полимеризация характеризуется большими возможностями регулирования структуры полимерных цепей и молекулярной массы и поэтому нашла широкое промышленное развитие, особенно при полимеризации диенов и их сополимеризации с виниловыми мономерами.[2, С.47]

В предтагаемом учебном пособии изложены современные представления о структуре полимеров, особенностях их свойств, способах регулирования структуры. В отличие от других пособий по химии и физике полимеров описаны методы исследования структуры полимеров, большое внимание уделено их теп-лофизическим и электрическим свойствам Рассмотрены способы получения полимеров, а также направленной физической и химической модификации их с целью создания материалов с требуемыми свойствами. В конце каждой главы даны контрольные вопросы, которые помогут студентам в усвоении пройденного материала.[5, С.5]

Полиуретаны представляют большой интерес дли производства обуви (главным образом, подошв) благодаря возможности переработки методами литья, легкости регулирования структуры и плотности вспененного материала и чрезвычайно высокой износостойкости получаемых изделий. Основными реагентами для получения микроячеистых полиуретанов (МПУ) являются: сложные олигозфиры П-6 (олигоадипинат эти лен гликоля) и I1-6BA (олигоадипинат смеси эти лен гликоля и 1,4-бутандиола), 1,4-бутандиол, вода и диизоциянат (чаще всего 4.4'-дифенилметан-диизоцианат). R этой сложной по составу реакционной смеси одновременно протекает ряд реакций, приводящих к различным1 результатам.[4, С.339]

Известно, что при радикальной полимеризации не представляется возможным существенно регулировать структуру полимерной цепи. Анионная же полимеризация диенов впервые открыла возможность регулирования структуры полимера путем изменения природы щелочного металла и условий полимеризации. Еще в 30-х годах на Опытном заводе литер Б было показано, что[1, С.11]

Изложенные во введении краткие сведения о строении полимеров и их макромолекул позволяют представить важное значение методов синтеза полимеров для прогнозирования их основных свойств и регулирования структуры. Сюда относятся такие важные показатели характеристик полимеров, как размер и вид их макромолекул, т. е. степень полимеризации, линейность, разветвленность, сет-чатость молекулярных структур; конфигурация звеньев мономеров в цепях и порядок их чередования; присутствие в цепи одинаковых или различных по химической природе звеньев. Все эти показатели задаются при синтезе полимера, а поэтому знание механизма этого процесса является важным этапом на пути к управлению основными свойствами полимера как при его переработке, т. е. в технологических стадиях производства изделий, так и при эксплуатации готовых изделий, прогнозировании сроков их службы, возможности работы в различных условиях. Иными словами, конструировать полимерные изделия, определять области применения тех или иных полимеров возможно без знания условий получения полимеров и связанных с ними основных их структурных характеристик.[2, С.19]

Итак, ионная полимеризация также является видом цепных процессов синтеза полимеров. Она может быть катионной и анионной, причем последняя более распространена. Стабильность карбаниона возрастает с увеличением электроотрицательности заместителя при двойной связи мономера. Для ионной полимеризации характерно наличие ионных пар каталитического комплекса, стабильность которых определяет ход реакции полимеризации. Существенно влияет на эти реакции среда, в которой они проводятся. Структура получаемого полимера, как правило, более регулярная, чем при свобод-норадикальной полимеризации, причем в ряде случаев со строго упорядоченным расположением заместителей в пространстве. В связи с наличием одинаковых по знаку зарядов на концах растущих цепей часто происходит не обрыв реакционной цепи, а либо передача цепи на мономер, либо образование макроионов («живые» полимеры). Эти виды полимеризации открывают большие возможности для регулирования структуры, а следовательно, и свойств полимеров.[2, С.47]

С целью нахождения путей регулирования структуры кардовых полиамидов, а[6, С.128]

Наиболее распространенный метод регулирования структуры, широко применяемый в промышленности изготовления искусственного волокна, состоит в одновременном создании поля напряжений и увеличении скорости кристаллизации. В промышленности переработки пластмасс ориентационные эффекты широко используют в процессах производства ориентированных пленок экструзионным методом. По существу все используемые методы регулирования структур сводятся к увеличению числа зародышей, роль которых в процессах охлаждения ориентированных расплавов начинают играть ориентированные участки пучков полимерных цепей.[10, С.160]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Серков А.Т. Вискозные волокна, 1980, 295 с.
9. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
10. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
12. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
13. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
14. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
15. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
16. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
17. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
18. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
19. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
21. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.

На главную