На главную

Статья по теме: Реологическими свойствами

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Управлять реологическими свойствами пластизолей можно не только путем изменения гранулометрического состава пастообразую-щего ПВХ. В частности, в [12] сделана интересная попытка проанализировать процесс смешения твердых ингредиентов (ПВХ, наполнителей, термостабилизаторов) в смеси жидких функциональных добавок (пластификаторов, разбавителей, ПАВ и др.) с точки зрения термодинамического равновесия. Авторы этой работы исходили из предпосылки о том, что изменение коагуляционной структуры пластизоля при смешении и хранении является следствием перераспределения жидких компонентов на поверхности твердых, протекающего в направлении установления термодинамического равновесия. На основании этого в процессе изготовления пластизолей должны соблюдаться следующие условия: во-первых, необходимо рассчитать количество каждого из жидких компонентов, которые нужно подать на поверхность каждого из твердых для достижения равновесного состояния; это количество пропорционально лиофильности, характеризуемой теплотой смачивания. Во-вторых, необходим такой порядок дозирования жидких компонентов, при котором их расчетные количества предварительно не смешиваются между собой, а подаются на поверхность твердых в порядке убывания значений удельных теплот смачивания.[7, С.263]

Наиболее ярким примером объектов, обладающих такими реологическими свойствами, являются расплавы ПЭНП (рис. 6.15). На этом же рисунке представлены теоретические кривые, рассчитанные для каучукоподобной жидкости Лоджа [уравнение (6.3-13)], при расчете которых использована функция памяти, справедливая при условии малых деформаций и малых скоростей деформации:[3, С.173]

Как правило, суспензионный ПТФХЭ отличается худшими реологическими свойствами. При равной молекулярной массе вязкость расплава суспензионного полимера выше, чем у ПТФХЭ, получаемого полимеризацией в массе [94, с. 206]. Полимеризация ТФХЭ эмульсионным способом дает полимер с более благоприятной зависимостью вязкости расплава от молекулярной массы [95] и имеет ряд других преимуществ. Однако очистка получаемого полимера от эмульгатора, коагулянта и инициирующих компонентов значительно затруднена. Для инициирования эмульсионной полимеризации ТФХЭ применяют те же инициирующие системы, что и при суспензионной полимеризации. В качестве эмульгаторов используют водорастворимые соли кислот общей формулы F(CFClCF2)nCF2COOH со средней молекулярной массой от 250 до 1000 (получаемые окислением низкомолекулярных полимеров ТФХЭ), также соли перфторкарбоновых кислот (например, перфтороктановой) и другие фторсодержащие эмульгаторы, используемые обычно для получения дисперсий ПТФЭ.[8, С.58]

Хотя обе эти задачи находятся в центре внимания исследователей, значительно больше известно о связи между молекулярной структурой и реологическими свойствами. Причина этого состоит в том, что реологические эксперименты гораздо проще, свободны от геометрических сложностей и неизотермических эффектов, проводятся в строго контролируемых условиях с использованием хорошо управляемых приборов. Поэтому к настоящему времени для монодисперсных полимеров можно считать более или менее установленной зависимость между % и молекулярной массой. Аналогич-[3, С.175]

Течение эластомеров. Для правильного понимания процесса переработки полимеров необходимо установить взаимосвязь между его технологическими параметрами, механическими и реологическими свойствами материала, т. е. сопротивлением материала изменению его формы. Определение реологических свойств материалов очень важно по многим причинам. Их знание позволяет сформулиро-[4, С.16]

Проанализируйте конструкцию В. Докажите, что при перемещении дорна в осевом направлении эта головка может быть использована в принципе для формования любых расплавов с различными реологическими свойствами.[3, С.511]

Создание давления и перекачивание расплава характеризуют переработку полимеров больше, чем любая другая элементарная стадия. Особенности перерабатывающего оборудования в значительной степени определяются реологическими свойствами расплавов полимеров, и в частности их высокой вязкостью. Наряду с высокой производительностью это является причиной, обусловливающей необходимость работы с относительно большими давлениями. Обычно применяют давления экструзии до 50 МПа и давления впрыска при литье под давлением — до 100 МПа. В гл. 9 было показано, что высокая вязкость полимеров неизбежно приводит к существенному диссипативному разогреву во время течения. Это обстоятельство в совокупности с низкой теплопроводностью полимеров заставляет использовать в конструкциях перерабатывающего оборудования мелкие каналы, позволяющие эффективно регулировать температуру расплава за счет теплообмена через наружные стенки. Кроме того, чувствительность полимеров к температурной и механической деструкции накладывает строгие ограничения на среднюю величину времени пребывания полимера в перерабатывающем оборудовании; этим объясняется преимущество машин с небольшой шириной функции распределения времен пребывания.[3, С.304]

Современные машиностроительные конструкции имеют, как правило, в своем составе разнообразные механические элементы в виде пакетов, плит, пластин, оболочек, присоединенных масс с большим количеством упругих и вязкоупругих связей, выполненных из материалов с различными реологическими свойствами. Рассмотрим механическую систему, в которой реологические свойства деформируемых элементов существенно различны, часть элементов — упругие, остальные — вязкоупругие с различными функциями наследственности.[2, С.145]

В заключение главы остановимся вкратце на наиболее важных аспектах зависимости реологии полимеров и их технологических свойств от молекулярной структуры. Прежде всего надо уяснить, как молекулярная структура полимера, определяемая современными экспериментальными методами, связана с реологическими свойствами расплава, измеряемыми на реометрах. Следующая задача состоит в установлении связи между обеими этими характеристиками полимеров, их технологическими свойствами и поведением при переработке (в особенности их формуемостью и свойствами изделий).[3, С.175]

С реологической точки зрения резиновая смесь обычно представляет собой систему с более или менее выраженными тиксо-тропными свойствами, которые объясняются перераспределением связей сажа •— каучук при внешних воздействиях. Хотя влияние типа сажи на реологические свойства смесей может быть значительным, течение сажевых смесей определяется в основном реологическими свойствами соответствующих каучуков.[1, С.73]

При 0 > 0 (см. рис. 13.25) течение в конической части кольцевого канала отличается от течения в канале вискозиметра. Поэтому результаты оценки разбухания экструдата при экспериментах на капиллярном вискозиметре не коррелируют с экспериментальными значениями hp (z). Еще труднее предсказать радиус цилиндрической заготовки Rp (z), поскольку он зависит не только от особенностей течения расплава внутри экструзионной головки, но также от сил, действующих на заготовку (модуля упругости и, вероятно, продольной вязкости). Миллер [34] пытался найти корретяцию между величиной Rf/Ri, отношением конечного радиуса заготовки к радиусу выходящей из фильеры трубки и структурными и реологическими свойствами ряда образцов ПЭВП. Однако никакой корреляции ему установить не удалось.[3, С.579]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
5. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
6. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
7. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
8. Пашин Ю.А. Фторопласты, 1978, 233 с.
9. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
10. Северс Э.Т. Реология полимеров, 1966, 199 с.
11. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
12. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
13. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
14. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
15. Виноградов Г.В. Реология полимеров, 1977, 440 с.
16. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
17. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
18. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
19. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
20. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
21. Лельчук В.А. Поверхностная обработка пластмасс, 1972, 184 с.
22. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную