На главную

Статья по теме: Результате химических

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Резины текут либо в результате химических реакций, включающих разрыв и восстановление химических поперечных связей44' 56 под влиянием относительно высоких температур или химических реагентов, либо в результате разрыва самих цепей под действием достаточно больших напряжений на макрорадикалы и их рекомбинации57'58.[11, С.120]

Полимераналогичные превращения происходят в результате химических реакций, обычно функциональных групп, а иногда других реак-ционноспособных центров полимеров, приводящие к получению полиме-раналогов приблизительно с той же длиной макромолекул и прежним химическим строением основной их цепи. Эти реакции часто используют на практике для модификации свойств полимеров. В результате полимерана-логичных превращений образуются новые функциональные боковые группы, сложные группировки в виде циклов и других структур, а также, наоборот, происходит раскрытие боковых циклических группировок. Очень часто невозможно достигнуть полного превращения исходного полимера в целевой продукт из-за сложности конверсии функциональных групп, являющихся частью всей макромолекулы, которые имеют сложное пространственное строение. Типичным примером полимераналогичных превращений с образованием новых функциональных групп является получение поливинилового спирта из поливинилацетата[6, С.99]

Соединение мономеров в макромолекулы происходит в результате химических реакций, которые протекают по законам цепных или ступенчатых процессов. Число повторяющихся звеньев в макромолекуле определяет молекулярную массу полимера, которая может составлять десятки, сотни тысяч и миллионы углеродных единиц. Какой бы реакцией ни был получен полимер, он всегда состоит из набора макромолекул, различных по размеру, поэтому молекулярная масса полимера является некоторой средней величиной.[8, С.9]

В последнее время для изучения строения лигнина и его изменений в результате химических превращений широкое применение нашел более информативный метод |3С-ЯМР-спектроскопии, в том числе ЯМР-спектроскопии высокого разрешения в твердых телах. Интервал химических сдвигов в спектрах в 20 раз шире, чем у спектров ПМР, и сигналы не перекрываются, что облегчает отнесение сигналов к определенным атомам углерода. В спектре лигнинов можно различать сигналы более 40 типов атомов углерода: углерода карбонильных групп; углерода, связанного с различными заместителями; первичных, вторичных и третичных атомов углерода и т.д. В спектрах 13С-ЯМР в отличие от спектров ПМР не соблюдается пропорциональность между интенсивностью сигнала и числом соответствующих ядер |3С, однако разработаны методы, допускающие количественную интерпретацию этих спектров.[6, С.418]

И, наконец, в-третьих, классификация может быть основана на характере изменения химической структуры макромолекул в результате химических реакций в них. Эта классификация представляется наиболее информативной с точки зрения состояния и свойств конечных, т. е. целевых, продуктов реакции. Согласно этой классификации различают полимераналогичные, внутримолекулярные и межмакромолекулярные реакции полимеров. Если при химической реакции происходит только изменение химического состава и природы функциональных групп в полимере без изменения исходной длины макромолекулы, то такие превращения полимеров называются полимераналогичными. Если в результате реакции изменяется длина исходной макромолекулярной цепи (как правило, в сторону уменьшения) или в цепи появляются циклические структуры, но сами макромолекулы остаются химически несвязанными друг с другом, то такие реакции называются внутримолекулярными. Если же исходные макромолекулы соединяются друг с другом химическими связями в результате реакции функциональных групп макромолекул друг с другом или взаимодействия полифункциональных низко молекулярных реагентов с разными макромолекулами, то такие реакции называются межмакромолекулярными. Они приводят[1, С.218]

Талмудом же разработаны методы образования «двумерных коллоидов» в результате химических реакций в поверхностной пленке и изучена кинетика образования коллоидных частиц на основании уменьшения измеряемого двумерного давления при агрегации молекул. —Прим. ред.[12, С.77]

Методы синтеза полимеров, содержащих реакционноспособные группы, которые в результате химических или термических обработок образуют свободные радикалы, могут быть использованы для осуществления прививки на активные центры этих групп. Особенность этого метода прививки заключается в том, что инициирование полимеризации происходит только на этих реакционноспособных центрах, исключая образование гомополи-мера, т. е. гомополимеризация с образованием поли-Б не протекает и полученный сополимер содержит только боковые цепи поли-Б, привитые на основную цепь поли-А.[17, С.291]

Химическое строение молекул при физической модификации не изменяется, а при химической изменяется. Могут быть и смешанные случаи, так как в результате химических реакций в полимерах изменяется их физическая структура.[1, С.215]

Роль плазмы в процессе травления состоит в образовании активных частиц и излучения высокой энергии, которые способны изменить поверхность подложки в результате химических реакций [93]. Энергия ионов и электронов разряда, которые попадают на поверхность травления, зависит от потенциала в области разряда, потенциала протравливаемой поверхности и потенциала электрода [94]. Потенциал протравливаемой поверхности по отношению к потенциалу плазмы (от единиц В до 1 кВ) всегда отрицательный, и подложка, следовательно, бомбардируется положительными ионами, что ведет к разрыву поверхностных химических связей, а в некоторых случаях к распылению поверхностного слоя или радиационному разрушению материала [95].[7, С.59]

Для анализа веществ, прямое хроматографическое определение которых невозможно, нашел применение метод реакционной газовой хроматографии (РГХ). Он основан на предварительном превращении, в результате химических реакций.этих веществ в форму, удобную для хроматографического анализа. Реакционно-химическая модификация компонентов проб сложного состава - один из наиболее эффективных путей повышения селективности хроматографического анализа [16, 17, 18, 19]. Возможными его направлениями являются: защита термически нестабильных или реакционноспособных функциональных групп в анализируемых соединениях, а также перевод соединений в элементорганические производные, детектирование которых может быть осуществлено селективным детектором [20].[5, С.64]

Поскольку разделение исходных, промежуточных, конечных и побочных продуктов реакции, вследствие того что они находятся в одной молекулярной цепи, невозможно, получение индивидуальных высокомолекулярных соединений в результате химических превращений полимера крайне затруднено. Последние могут быть получены только в том случае, когда реакция протекает в одном направлении и достигнута полная степень превращения.[2, С.216]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
2. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
8. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
9. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
10. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
11. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
12. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
13. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
14. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
15. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
16. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
17. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
18. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
19. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
20. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
21. Лельчук В.А. Поверхностная обработка пластмасс, 1972, 184 с.
22. Почепцов В.С. Химия и технология поликонденсационных полимеров, 1977, 140 с.

На главную