На главную

Статья по теме: Термореактивных полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Пластификация термореактивных полимеров. Термореактивные полимеры пластифицируются значительно меньше, чем термопластичные. Имеющаяся в литературе информация свидетельствует об использовании пластификации, как метода модификации термореактивных полимеров. Так, введение пластификаторов в фено-лоформальдегидную смолу приводит к изменению реологических характеристик формовочной композиции [238]. В качестве пластификаторов фенолоформальдегидных смол рекомендуется ис-[8, С.167]

Для развития производства термореактивных полимеров большое значение имеет уровень развития деревообрабатывающей промышленности (рис. 9.1), поскольку именно деревообрабатывающая промышленность является самым крупным потребителем кар-бамидных, меламиноформальдегидных и фенолоформальдегидных смол. На изготовление древесных материалов расходуется примерно 85% всех производимых карбамидоформальдегидных и более 25% фенолоформальдегидных смол. Основными потребителями композиционных древесных материалов являются строительство и мебельная промышленность.[5, С.118]

При компрессионном формовании полость формы заполняется определенным количеством полимера, который не впрыскивается в закрытую форму, а приобретает конфигурацию полости формы под действием усилий, возникающих при смыкании половин формы (рис. 1.8). Сжимающее усилие, создаваемое гидравлическим прессом, прижимает порцию полимера к стенкам формы и заставляет полимер растекаться по форме, заполняя ее полость. Этот способ формования широко применяется для переработки термореактивных полимеров, хотя в принципе им можно пользоваться и для формования термопластичных полимеров. Тепло передается к полимеру от горячих стенок формы, вызывая протекание химических процессов полимеризации и поперечного сшивания. Загружать формы можно предварительно приготовленными навесками или таблетками из формуемого полимера или заготовками пластицированного полимера, выдавленными из червячного экструдера.[3, С.23]

После того как обработка расплава полимера заканчивается получением изделия заданной формы, возникает проблема отверждения, противоположная проблеме плавления. Методы решения уравнений теплопроводности, описанные в этой главе, применительно к плавлению, справедливы и для отверждения. Специальные вопросы отверждения рассматриваются в главах, посвященных формованию. Стадия плавления прежде всего касается переработки термопластов (за исключением холодного формования термопластов). Однако некоторые выводы, сделанные в этой главе, относятся и к переработке термореактивных полимеров, отверждающихся при нагревании вследствие образования поперечных связей. В этом случае нагрев осуществляется как за счет теплопроводности, так и за счет тепла, выделяющегося вследствие химической реакции отверждения.[3, С.251]

Пространственные полимеры не могут переходить в пластическое состояние при повышенной температуре. С этой точки зрения подобные полимеры можно рассматривать как термостабильные материалы. Образование пространственных структур происходит с последовательным возрастанием молекулярного веса полимера. В процессе образования термостабильного полимера постепенно уменьшается его способность размягчаться (переходить в пластическое состояние), растворяться или набухать в каком-либо растворителе. Полимеры, образующиеся на этих промежуточных стадиях, носят название термореактивных полимеров. Их можно формовать в изделия, наносить в виде лака или клея на защищаемые или склеиваемые поверхности, а затем переводить полимер в термостабильное состояние.[2, С.19]

Типичные ТМК для термопластичных и термореактивных полимеров приведены на рис. 7.4 и 7.5.[4, С.107]

По дисперсионному методу водный раствор термореактивных полимеров (мочевиноформальдегидных, фенолоформальдегидных и др.), смешанный с пенообразователем и катализатором, вспенивается быстроходными мешалками или продуванием через раствор какого-либо малорастворимого в воде газообразного вещества с последующим отверждением полимера в стенках ячеек пены. Качество получаемого вспененного материала во многом зависит от поверхностной активности пенообразователя, вязкости и прочности поверхностных слоев вспененных растворов. Особо важную роль играет стойкость пены, так как для перехода стенок пены из жидкой фазы в твердую требуются определенное, иногда длительное время и часто — повышенная температура.[7, С.9]

Газонаполненные полимеры получают на основе как термопла-. стичных, так и термореактивных полимеров химическим и физическим способами. .[7, С.6]

Целью настоящей книги является обобщение сведений о химической стойкости наиболее распространенных термопластичных, термореактивных полимеров, композиционных материалов, каучуков и рез'ин, лакокрасочных покрытий в растворах кислот, щелочей, солей, в газах и органических растворителях.[10, С.5]

Этими методами можно получить вспененные материалы на основе как термопластичных (полистирол, поливинилхлорид и др.), так и термореактивных полимеров (фенолоформальдегидные, мочевино-формальдегидные, эпоксидные, полиуретаны и др.).[7, С.8]

Исследование структуры большого числа разнообразных наполненных эпоксидных композиций, а также эпоксидных полимеров, отверждающихся при контакте с твердыми телами, показало, что сплошность эпоксидных материалов в таких условиях обычно не нарушается и эпоксидные матрицы значительно лучше других стеклообразных термореактивных полимеров переносят работу в условиях стесненной деформации, что в значительной мере и обусловливает их широкое применение в наполненных пластиках, композиционных материалах, клеях, компаундах и покрытиях.[9, С.92]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
5. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Адрианов Р.А. Пенопласты на основе фенолформальдегидных полимеров, 1987, 81 с.
8. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
9. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
10. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
11. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
12. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
13. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
14. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
15. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
16. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
17. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
18. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
19. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
20. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
21. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
22. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
23. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
24. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
25. Бажант В.N. Силивоны, 1950, 710 с.
26. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
27. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
28. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
29. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную