На главную

Статья по теме: Зависимости деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Выше уже упоминалось, что модуль упругости изменяется при изменении скорости деформации испытываемого образца и что это вытекает из временной зависимости деформации от напряжения. Если напряжение изменяется периодически с относительно малой амплитудой и если известно, как деформация отстает от напряжения, то можно вычислить динамический модуль упругости G и коэффициент механических потерь tg б, который характеризует способность материала поглощать колебания. Динамический модуль упругости возрастает с повышением частоты синусоидального напряжения, а коэффициент потерь обычно проходит через несколько областей, в которых материал обнаруживает максимальное поглощение колебаний. Эти характеристические частоты соответствуют частотам отдельных атомных групп в цепи. Определение зависимости динамического модуля упругости и коэффициента механических потерь от температуры в диапазоне от очень низкой до близкой к температуре плавления полимера дает представление о температурном интервале, в котором наблюдается увеличение подвижности характеристических групп макромолекул, сопровождаемое заметными изменениями свойств полимера. Этот метод,[6, С.107]

Природа температурной зависимости деформации и прочности как для неориентированных, так и для ориентированных полимеров одинакова: она> сводится к флуктуационному разрыву химических связей [17, с.'57].[2, С.209]

Переходы полимеров из одного состояния в другое удобно регистрировать с помощью термомеханического метода исследования,, который основан на измерении зависимости деформации полимера от температуры при действии на него постоянной нагрузки в течение определенного времени (термомеханическая кривая).[3, С.139]

Термодинамика высокоэластической деформации. Способность к развитию больших обратимых (высокоэластических) деформаций является уникальным свойством полимерных материалов. Это свойство описывают кривой зависимости деформации е от прилагаемого напряжения а — так называемой деформационно-прочностной кривой или кривой растяжения (рис. V. 7).[3, С.143]

Температура стеклования является более однозначной характеристикой полимера, чем температура хрупкости, но все же и ее значения существенно зависят от метода определения. Температуру стеклования можно определить, наблюдая характер изменения физических свойств полимера с изменением температуры. В зависимости от метода определения, скорости изменения температуры или скорости нагружения образца, его формы и характера деформаций изменяются и результаты определения температуры стеклования. Выше (см. рис. 7) был рассмотрен распространенный метод определения температуры стеклования по характеру изменения удельного объема полимера с изменением температуры (дилатометрическое определение). Широко применяются также методы определения температуры стеклования по кривым зависимости деформации полимера (при постепенном возрастании температуры) от частоты действия силы (метод Алек-[1, С.41]

Кривая зависимости деформации от температуры при постоянной нагрузке называется термомеханической кривой.[5, С.197]

На рис. 4.2 приведены кривые зависимости деформации хлорированных (содержащих 8,5% хлора) и вулканизованных этилен-пропиленовых сополимеров от напряжения при различных температурах. Видно, что свойства вулканизатов в большой степени зависят от температуры: с понижением температуры их прочность быстро возрастает, так же как у эластомеров, кристаллизующихся при растяжении.[10, С.196]

На основании данных таблицы строят график зависимости деформации от температуры. .......[3, С.161]

На основании теоретических кривых можно построить кривые зависимости деформации от температуры для[5, С.171]

Деформируемость определяют термомеханическим методом, состоящим в измерении зависимости деформации полимера от температуры. При постоянной нагрузке эту зависимость называют термомеханической кривой.[4, С.102]

Деформация образца измеряется в широком интервале температур. Образец равномерно нагревается, что фиксируется движением пера, и на диаграммной бумаге записывается кривая зависимости деформации от температуры. Нагревание образца с постоянной скоростью осуществляется прибором для регулирования температуры термоблока. Время цикла, а также время нагружения в[4, С.107]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
5. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
6. Амброж И.N. Полипропилен, 1967, 317 с.
7. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
10. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
11. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
12. Серков А.Т. Вискозные волокна, 1980, 295 с.
13. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
14. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
15. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
16. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
17. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
18. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
19. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
20. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
21. Виноградов Г.В. Реология полимеров, 1977, 440 с.
22. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
23. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
24. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
25. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
26. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
27. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
28. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
29. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
30. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
31. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
32. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
33. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
34. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
35. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную