На главную

Статья по теме: Шероховатой поверхности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Скибо, Херцберг и Мансон [191] изучали характеристики роста усталостной трещины в полистироле в интервале значений коэффициента интенсивности напряжений и частоты. Образцы с нанесенным односторонним надрезом и испытываемые на растяжение компактные образцы, изготовленные из листов промышленного полистирола (с молекулярной массой 2,7 -105), были подвергнуты циклическому нагружению с постоянной амплитудой на частотах 0,1, 1, 10 и 100 Гц, что соответствовало скоростям роста усталостной трещины от 4;Ю~7 до 4Х X10~3см/цикл. При заданном значении интенсивности напряжений скорость роста усталостной трещины уменьшается с увеличением частоты, причем само уменьшение скорости роста наиболее сильно выражено при больших значениях интенсивности напряжения. Чувствительность данного полимера к частоте во всем исследованном интервале значений была объяснена влиянием переменной компоненты ползучести. В макроскопическом масштабе поверхность разрушения была двух различных типов. При низких значениях интенсивности напряжений наблюдалась зеркальная поверхность с высокой отражательной способностью, которая с увеличением интенсивности напряжения превращалась в шероховатую матовую поверхность. Повышая частоту, сдвигали переход между этими типами поверхности разрушения в сторону более высоких значений интенсивности напряжений. Микроскопическое исследование^ зеркальной поверхности выявило распространение обычной трещины вдоль одной трещины серебра, в то время как исследование шероховатой поверхности выявляло рост обычной трещины через большое число трещин серебра, причем все они в среднем были перпендикулярны оси приложенного напряжения. Электронное фракто-графическое исследование зеркальной области выявило много параллельных полос, перпендикулярных направлению роста обычной трещины, каждая из которых формировалась в процессе ее прерывистого роста в ряде усталостных циклов. Размер таких полос соответствовал размеру пластической зоны у вершины трещины, рассчитанной по модели Дагдейла. При высоких значениях интенсивности напряжений была получена новая система параллельных следов в матовой области, которая соответствовала приращению длины трещины за один цикл нагружения [191].[1, С.412]

Причиной абразивного износа может послужить адгезионный износ, сопровождающийся образованием шероховатой поверхности и накоплением продуктов износа. Это особенно опасно, если твердость продуктов износа может повышаться в результате окисления.[2, С.90]

В случае гладкой поверхности появление «волн отделения» приводит к износу полимера посредством скатывания его поверхностного слоя, тогда как в случае шероховатой поверхности имеет место преимущественно абразивный износ [13.5]. В случае гистере-зисного механизма внешнего трения (т. е. при наличии механических потерь) при деформации шероховатостей наблюдается усталостный износ полимеров. Следует отметить, что последний вид износа не является интенсивным как абразивный и изделие из полимера сохраняет работоспособность в течение длительного времени. Абразивный износ является весьма интенсивным, и полимер быстро теряет свою работоспособность. Когда полимер перемещается по грубой шероховатой поверхности, то адгезия и гистерезис приводят соответственно к абразивному и усталостному износу. Для эластомеров с повышенными твердостью и сопротивлением раздиру «волны отделения» и износ посредством скатывания не имеют места. На температурных и временных зависимостях максимумы силы трения соответствуют минимумам износа (или истирания) полимеров.[4, С.362]

Используется также метод оценки степени контактирования тел, основанный на наблюдении фазового контраста. Сущность его заключается в том, что при контактировании шероховатой поверхности с полированной пластиной, покрытой тончайшей серебряной пленкой, в местах контакта пленка и стекло незначительно деформируются. Пленку через стекло рассматривают в микроскоп и, применяя метод фазового контраста, фиксируют пятна и их размер. Недостатком этого метода является невозможность его применения к движущимся сопряженным поверхностям.[4, С.361]

Зависимость характеристической энергии от скорости перемещения зажимов носит сложный характер, так как при малых скоростях наблюдается «волокнистое» разрушение с образованием шероховатой поверхности раздира, при больших, как и при разрушении твердых тел, образуется гладкая поверхность раздира (рис. 141).[10, С.237]

Адгезия улучшается при увеличении полярности адгезива (гари нагревании, облучении и т. п.), использовании грунтовок и клеев, улучшающих смачиваемость поверхности подложки и снижающих внутренние напряжения в покрытиях, при создании шероховатой поверхности подложки или ее химической обработки перед нанесением покрытия.[11, С.190]

Коэффициент а существует по причине различия механических свойств адгезива и субстрата и может иметь значения порядка десятка и более единиц, коэффициент р при наличии микротрещин и дефектов структуры может быть порядка сотен единиц, а 5ОСт — коэффициент остаточных напряжений на шероховатой поверхности субстрата, составляющий десятки единиц [35].[8, С.91]

Истирание резин является сложным процессом, механизм которого существенным образом зависит от комплекса условий, характеризующих работу трения. Для высокоэластичных материалов различают несколько видов износа. В настоящей работе рассматривается лишь абразивный износ, в основе которого лежит разрушение поверхностного слоя резины в результате многократных деформаций по твердой шероховатой поверхности контртела.[17, С.95]

Подготовка поверхности металлов. Строение кристаллической решетки, степень шероховатости, наличие оксидов на поверхности металла и ряд других факторов оказывают значительное влияние на прочность соединений. Снятие поверхностного слоя приводит обычно -к активации поверхности, уменьшению угла смачивания и повышению площади контакта склеиваемых материалов. Кроме того, при наличии шероховатой поверхности образование микротрещин в пленке клея при нагружении [56] протекает при более высоких значениях напряжений, чем в случае соединений с гладкой поверхностью, так как при этом изменяется доступность к поверхности субстрата. Все эти факторы обусловливают зависимость прочности от степени шероховатости (табл. 5.4). В результате механической обработки поверхности субстрата угол смачивания снижается примерно вдвое, а прочность возрастает в пять раз. Эффективность этого метода сохраняется, если клеевые соединения работают при температурах ниже Тс пленки клея. При более высоких температурах вследствие резкого ухудшения когезионных свойств клея влияние степени шероховатости поверхности на прочность соединений незначительно.[9, С.121]

Сложнонапряженное состояние характерно для процесса истирания (износа) Р., возникающего как вследствие адгезионного взаимодействия на поверхностях контакта трущихся тел, так и из-за неровностей поверхности твердого контртела. Коэфф. трения ц (отношение тангенциальных F и нормальных Q нагрузок в контакте) зависит от Q и скорости V скольжения или качения при трении. Для описания температурно-скоростной зависимости ji применим метод приведенных переменных (рис. 5). Различают три вида износа Р., легко определяемых визуально: 1) абразивный — путем царапания Р. по твердым выступам шероховатой поверхности абразива; 2) усталостный — при многократной деформации, механич. потерях и теплообразовании в Р. во время скольжения (качения) на неровностях поверхности твердого контртела; 3) износ посредством скатывания, т. е. путем последовательного отдирания тонкого поверхностного слоя Р. (см.[18, С.161]

Влияние твердости материала показано на рис. 10.10 для трех различных поверхностей при постоянной скорости скольжения (1 см/сек). Коэффициент трения во всех случаях увеличивается линейно с уменьшением твердости. Как и у других эластомеров, коэффициент трения меняется также в зависимости от температуры, достигая максимума около 60 °С (рис. 10.11). Скорость скольжения мало влияет на коэффициент трения, хотя при более высоких скоростях он несколько увеличивается. Как видно на рис. 10.10, коэффициент трения на гладких формованных пластмассовых поверхностях выше, чем на относительно шероховатой поверхности грубо обработанной стали.[5, С.209]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Wright P.N. Solid polyurethane elastomers, 1973, 304 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
8. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
9. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
10. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
11. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
12. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
13. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
14. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
15. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
16. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
17. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
18. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
19. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
21. Лельчук В.А. Поверхностная обработка пластмасс, 1972, 184 с.
22. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную