На главную

Статья по теме: Длительность пребывания

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Оборудование Зона деформирозания Средние значения скоростей сдвига ; — I Средние'напряже-ния сдвига, МПа Длительность пребывания в зоне деформиро- Общая деформация сдвига[3, С.73]

Для сравнения результатов испытаний при циклическом нагружении с результатами, получающимися при использовании описанного ранее метода определения долговечности, удобно рассмотреть циклическое растяжение при воздействии импульсов, при которых напряжение периодически изменяется от нуля до некоторого постоянного значения. Считают, что при таком способе нагружения разрыв наступает, когда суммарная длительность пребывания образца под нагрузкой становится равной долговечности материала [49, с. 68]:[2, С.36]

Длительность пребывания каждого изделия в форме с учетом времени перезарядки:[3, С.114]

Примечание. Давление пластикации во всех случаях не превышает 30 Мн/м2 (300 кгс/смг), частота вращения червяка ок. 50 об мин, длительность пребывания материала в инжекциошгом цилиндре 4—20 сек, продолжительность впрыска 2 — 7 сек.[4, С.39]

Так, в производстве полиэтилена при высоком давлении используют трубчатые реакторы и автоклавы с мешалками (см. Этилена полимеры). В первом случае большая длительность пребывания реакционной массы в аппарате, наличие градиента темп-р по длине реактора и большая поверхность теплообмена обеспечивают увеличение степени конверсии мономера при более широком ММР продукта. Во втором случае теплосъем через стенку практически равеп нулю, н реактор работает в автотермич. режиме с очень малыми временами удерживания реакционной массы. Стационарность достигается вследствие непрерывного подвода холодного этилена. Благодаря малому градиенту темп-р и концентраций получают продукт с более узким ММР. Однако свойства продуктов, получаемых в обоих случаях, достаточно близки друг к другу (за счет превалирующего влияния разветвленное™ макромолекул н плотности, к-рые мало зависят от типа реактора, на техно-логич. и физико-химич. свойства полиэтилена по срав-пенттто с влиянием ММР).[4, С.449]

Свойства Р. определяются параметрами, характеризующими вязкотокучие, вязкоупругие и ьысокоэлас-тич. свойства материала выше темп-ры стеклования (см. также Реология, Индекс расплава). Важное значение имеют также характеристики термич. и термоокисли-тельной стабильности Р., определяющие допустимые теми-ры нагревания и длительность пребывания Р. при данной темп-ре.[5, С.140]

Жидкое А. с. полимеров возможно только при отсутствии пространственной структуры или в случае, когда связи между макромолекулами достаточно слабы, т. е. легко нарушаются тепловым движением. Вследствие высокой вязкости полимеров и гибкости макромолекул жидкое А. с. полимеров также обладает особенностями. Развитие текучести, т. е. изменение формы под действием внешних сил, может происходить настолько замедленно, что при относительно небольших временах оно практически незаметно и вследствие высокоэластично-сти потока возникает комплекс свойств;, соответствующий определению твердого А. с. Однако с течением времени текучесть оказывается заметной, вследствие чего в той или иной степени маскируется высокоэластич-ность и жидкое А. с. такого тела становится очевидным. Вязкость полимера очень сильно уменьшается с ростом темп-ры, а также при введении растворимых в нем ннзкомолекулярных веществ (см. Вязкость, Пластификация, Растворы). Поэтому длительность пребывания способного к течению полимера (или его р-ра) в твердом А. с. может варьировать от сколь угодно больших значений (напр., при темп-ре, блиакой к стеклования температуре) до 1—0,1 мсек (напр., в р-рах полимеров низкой концентрации).[6, С.11]

Жидкое А. с. полимеров возможно только при отсутствии пространственной структуры или в случае, когда связи между макромолекулами достаточно слабы, т. е. легко нарушаются тепловым движением. Вследствие высокой вязкости полимеров и гибкости макромолекул жидкое А. с. полимеров также обладает особенностями. Развитие текучести, т. е. изменение формы под действием внешних сил, может происходить настолько замедленно, что при относительно небольших временах оно практически незаметно и вследствие высокоэластично-сти потока возникает комплекс свойств, соответствующий определению твердого А. с. Однако с течением времени текучесть оказывается заметной, вследствие чего в той или иной степени маскируется высокоэластич-ность и жидкое А. с. такого тела становится очевидным. Вязкость полимера очень сильно уменьшается с ростом темп-ры, а также при введении растворимых в нем нпзкомолекулярных веществ (см. Вязкость, Пластификация, Растворы,). Поэтому длительность пребывания способного к течению полимера (или его р-ра) в твердом А. с. может варьировать от сколь угодно больших значений (напр., при темп-ре, близкой к стеклования температуре) до 1—0,1 мсек (напр., в р-рах полимеров низкой концентрации),[7, С.8]

Примечание. Давление пластикации во всех случаях не превышает 30 Мн/м* (300 кгс/смг), частота ок. 50 об/мин, длительность пребывания материала в инжекционном цилиндре 4—20 сек, продолжительность[8, С.37]

Так, в производстве полиэтилена при высоком давлении используют трубчатые реакторы и автоклавы с мешалками (см. Этилена полимеры). В первом случае большая длительность пребывания реакционной массы в аппарате, наличие градиента темп-р по длине реактора и большая поверхность теплообмена обеспечивают увеличение степени конверсии мономера при более широком ММР продукта. Во втором случае теплосъем через стенку практически равен нулю, и реактор работает в автотермич. режиме с очень малыми временами удерживания реакционной массы. Стационарность достигается вследствие непрерывного подвода холодного этилена. Благодаря малому градиенту темп-р и концентраций получают продукт с более узким ММР. Однако свойства продуктов, получаемых в обоих случаях, достаточно близки друг к другу (за счет превалирующего влияния разветвленности макромолекул и плотности, к-рые мало зависят от типа реактора, на техно-логич. и физико-химич. свойства полиэтилена по сравнению с влиянием ММР).[8, С.447]

Изоцианат- Вычислен -мое значе- исходная в ПМА Длительность пребывания образцов в анилине[10, С.397]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
2. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
3. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
4. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
5. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
6. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
7. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
8. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
9. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
10. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную