На главную

Статья по теме: Фенольных соединений

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Особую группу фенольных соединений, объединяемых по их дубящим свойствам, составляют таннины (в технической литературе широко используют термин «танниды»). Растительные дубильные экстракты, получаемые из коры, древесины, листьев и плодов некоторых растений экстрагированием горячей водой, представляют сложные смеси веществ, часть которых не обладает дубящими свойствами, т.е. не являются дубильными веществами. Исследование факторов, определяющих эффективность дубильных веществ, позволило ограничить группу таннинов соединениями с молекулярной массой от 500 до 3000, содержащими большое число фенольных гидроксильных групп (одну-две на 100 единиц молекулярной массы) и способными образовывать прочные связи с белками и некоторыми другими биополимерами, а также с синтетическими полиамидами. Кора многих деревьев содержит таннины, в особенности, у ели, лиственницы, ивы, ряда тропических лиственных пород. Древесина большинства пород умеренной климатической зоны, за исключением дуба, каштана и секвойи, почти не содержит таннинов, тогда как во многих тропических породах их может содержаться значительное количество (до 16...25%).[2, С.524]

Весьма распространенной группой растительных фенольных соединений, экстрагируемых из древесины хвойных и лиственных пород и многих недревесных растений, являются флавоноиды. Это группа родственных фенольных соединений, молекулы которых состоят из двух бензольных колец, соединенных пропановой цепочкой (С6-Сз-Сб). Наиболее распространенные флавоноиды имеют в основе структуру флавана, в которой пропановая цепь участвует в образовании шестичленного кислородного гетероцикла. Эти соединения классифицируют по структуре гетеро-цикла и входящим в него функциональным группам. На схеме 14.10 приведены структурные формулы наиболее важных представителей - катехи-на, лейкоцианидина, дигидрокверцетина и кверцетина, относящихся, соответственно, к флаван-3-олам, флаван-3,4-диолам, флаванонолам и фла-ванолам.[2, С.523]

Растения способны синтезировать очень широкую гамму фенольных соединений. С участием промежуточных продуктов шикиматного пути биосинтеза лигнина (см. 12.5.1) происходит образование фенолкарбоновых кислот, простых фенолов, фенольных альдегидов и спиртов, хинонов, нафтохинонов, антрахинонов, лигнанов, ку-маринов, ароматических аминокислот (рис. 14.5). Образуются также бензольные кольца терпеновых хинонов (убихинонов, пластохинонов, филлохинона) и хроманолов (токоферолов), участвующих в процессах фотосинтеза и дыхания.[2, С.520]

Спранг [39] изучал влияние метилольного замещения на реакционную способность различных фенольных соединений — фенола, крезолов и ксиленолов —с «-формальдегидом в присутствии три-этаноламина в качестве катализатора (без добавления воды). Ниже представлены результаты определения относительных скоростей превращения формальдегида в реакции с различными фе-нольными соединениями:[1, С.55]

Как уже отмечалось, основным источником фенолов является уголь, точнее каменноугольный битум, который обычно содержит около 1,5% фенольных соединений. В основном это сам фенол[1, С.26]

Простые фенолы, молекулы которых содержат одно бензольное кольцо, представлены в древесине хвойных и лиственных пород главным образом промежуточными и побочными продуктами биосинтеза лигнина. Поэтому среди фенольных соединений древесины хвойных пород обнаружены соединения гваяцильного типа и мало соединений сирингильного типа, в отличие от древесины лиственных. В свободном виде они присутствуют в древесине в незначительных количествах и представлены в основном гликозидами, такими как кониферин и сирингин (см. 12.5.2). Фе-руловая кислота в отдельных случаях (древесина березы, дуба) может быть связана с высшими спиртами. Большое количество простых фенолов образуется при химической переработке древесины в результате деструкции лигнина.[2, С.521]

В результате всех разнообразных последовательных и параллельных реакций при пиролизе, с одной стороны, происходит перестройка структуры лигнина с образованием в конечном итоге структуры угля, а, с другой стороны - распад лигнина с получением низкомолекулярных фенольных соединений и других летучих продуктов.[2, С.462]

Иногда по компонентному составу экстрактивные вещества древесины подразделяют на три группы: алифатические соединения; терпены и терпеноиды; фенольные соединения. Эти группы соединений отличаются своими свойствами и локализацией в древесине. Алифатические соединения, терпены и терпеноиды экстрагируются малополярными растворителями, тогда как для фенольных соединений требуются полярные органические растворители, способные образовывать водородные связи. Алифатические соединения концентрируются главным образом в лучевой и древесной паренхиме, фенольные соединения - в ядровой древесине, а терпены и терпеноиды (в основном монотерпены и смоляные кислоты) - в смоляных ходах. Фактически при такой классификации не учитываются соединения, извлекаемые из древесины только водой и не растворимые в органических растворителях.[2, С.497]

Поскольку скорость данной реакции зависит от давления кислорода, кислород должен участвовать в стадии инициирования. Это согласуется с обнаруженным при исследовании низкомолекулярных соединений обстоятельством, что при абсолютном отсутствии гидроперекисей, а также при температурах порядка 100° инициирование в результате непосредственного взаимодействия по месту двойной связи начинает играть важную роль. Однако скорость этой реакции инициирования должна быть пропорциональна концентрации кислорода в первой степени. Очевидно, что уравнение (57а) не описывает рассматриваемой ингибированной реакции полимера. По-видимому, реакция обрыва должна происходить в результате взаимного уничтожения двух активных центров. Болланд и Батеман [91, 92] ранее уже высказали предположение о том, что механизм антиокислительного действия аминосоединений может отличаться от механизма действия фенольных соединений. Шелтон и Кокс [87] предположили, что защитное действие аминов сводится к разрушению гидроперекисей по механизму, не приводящему к образованию инициирующих радикалов. Предложенный ими механизм ингибированного окисления вулканизатов GR-S и натурального каучука[5, С.160]

Рис. 14.5. Схема биосинтеза фенольных соединений (по шикиматному пути)[2, С.520]

К физическим доказательствам ароматической природы лигнина относятся: показатель преломления лигнина, типичный для ароматических (фенольных) соединений (около 1,6); максимумы поглощения в УФ-спектрах лигнина при длинах волн, соответствующих поглощению ароматических хромофоров, и полосы поглощения в ИК-спектрах лигнина, характерные для бензольного кольца (см. 12.7.3). Поглощение УФ-[2, С.375]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
2. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
3. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
4. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
5. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.

На главную