На главную

Статья по теме: Физического состояния

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Диаграмма физического состояния системы полимер — пластификатор. Температурные и концентрационные пределы совместимости пластификатора с полимером с большой точностью можно определять по диаграмме физического состояния компонентов системы [48].[10, С.144]

В пределах одного физического состояния большое значение имеет плотность упаковки макромолекул. По-видимому, полиизо-бутилен значительно плотнее упакован, чем натуральный каучук и полнбутадиен, поэтому его газопроницаемость значительно меньше, чем у последних двух полимеров. Из стеклообразных полимеров наибольшей газопроницаемостью обладает полистирол, что может быть объяснено его более рыхлой упаковкой по сравнению с упаковкой других высокомолекулярных стекол.[5, С.491]

Переход полимера из одного физического состояния в другое совершается не при какой-нибудь определенной температуре, а в некотором диапазоне температур' при этом наблюдается постепенное изменение его термодинамических свойств. Средние температуры областей перехода называются температурами перехода. Температура перехода из Стеклообразного в вьтсокоэдастическое состояние (и обратно)—'Эта температура стеклования Тс\ температура перехода из высокоэластического в вязкотекучее состояние (и обратно)—это температура текучести Гт (или ft).[5, С.131]

Естественно, что величина k для одного и того же полимера будет зависеть от температуры и от физического состояния, в котором полимер находится, поскольку от этого зависит величина р. Расчет, проведенный для большого числа аморфных монолитных полимеров, находящихся в стеклообразном состоянии, показал, что в первом приближении величина А является постоянной и практически не зависит от химического строения полимера [41]. Переход от полимеров простого химического строения к полимерам очень сложного химического строения не приводит к какому-либо существенному изменению доли занятого объема (т.е. величины k).[6, С.43]

При динамических измерениях по зависимостям IgG', lgG" = = /((u) можно установить область перехода полимеров из одного деформационного физического состояния в другое (рис. 6.4). Особенно отчетливо это проявляется, когда М = 20 Ме. Если M = Met. то плато высокоэластичности на зависимости lgG' = /(co) практически не проявляется. Переход в высокоэластическое состояние всегда реализуется при напряжениях Р=105-;-106 Па. Кривые 1, 2К 3 на рис. 6.4 и 6.5 соответствуют различным значениям нормированных молекулярных масс М/Ме. Установившееся течение разных полимеров при сдвиговых напряжениях реализуется при Р = = 105-М06 Па.[1, С.157]

С двойным лучепреломлением полимеров связано возникновение явления фотоупругости (в механическом поле), эффекта Керра (в электрическом поле) и эффекта Коттона—Мутона (в магнитном поле). Фотоупругость полимеров зависит от их фазового и физического состояния. Метод фотоупругости используется для изучения характера распределения внутренних напряжений в полимерах без их разрушения [9.4]. Изучая эффект Керра в полимерах, можно оценить эффективную жесткость полярных макромолекул, мерой которой служит корреляция ориентации электрических диполей вдоль цепей [9.5]. Наблюдение эффекта Коттона — Мутона (проявление дихроизма в магнитном поле), обусловленного диамагнитной восприимчивостью и анизотропией тензора оптической поляризуемости, позволяет оценивать значения коэффициентов вращательного трения макромолекул полимеров. Все эти методы исследования оптических свойств полимеров получили широкое распространение и, так же как и спектроскопические методы, в достаточной МРПЛ описаны в литературе [9.6; 50].[1, С.234]

Цель работы. Получение термомеханических кривых полимеров, определение температур переходов из одного фазового или физического состояния в другое.[2, С.159]

Задание. Проанализировать характер полученной термомеханической кривой; определить температуры переходов из одного фазового или физического состояния в другое.[2, С.161]

Скорость химических превращений высокомолекулярных соединений, а также однородность получаемых продуктов в значительной степени зависят от физического состояния полимера, так как большинство высокомолекулярных соединений растворимо в ограниченном числе растворителей и реакции их чаще всего протекают в гетерогенной среде. Большинство полимеров неоднородно. Кристаллические полимеры двухфазны и содержат кристаллические и аморфные области. Отдельные участки однофазных аморфных полимеров могут иметь различную степень упорядоченности и разную плотность упаковки молекул.[4, С.217]

Б предыдущих главах было показано, что механические и электрические свойства полимеров в сильной степени зависят от их строения, фазового и физического состояния. Эти же факторы влияют и на термодинамические свойства растворов полимеров. Поэтому целесообразно рассмотреть термодинамические закономерности процесса растворения высокоэластических, стеклообразных и кристаллических полимеров.[5, С.366]

Задание. Проанализировать характер кривой зависимости модуля кручения от температуры при заданном моменте инерции системы; определить температурные области переходов полимеров из одного физического состояния в другое; проанализировать полученную зависимость тангенса угла механических потерь от температуры при заданном моменте инерции системы; объяснить смещение температур стеклования полимеров при изменении момента инерции системы.[2, С.163]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
6. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
9. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
10. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
11. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
12. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
13. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
14. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
15. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
16. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
17. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
18. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
19. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
20. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
21. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
22. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
23. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
24. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
25. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
26. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
27. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
28. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
29. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
30. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
31. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
32. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
33. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
34. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
35. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
36. Виноградов Г.В. Реология полимеров, 1977, 440 с.
37. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
38. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
39. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
40. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
41. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
42. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
43. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
44. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
45. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
46. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
47. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
48. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
49. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
50. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
51. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
52. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
53. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
54. Фишер Э.N. Экструзия пластических масс, 1970, 288 с.

На главную