На главную

Статья по теме: Характера деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Зависимость характера деформации от температуры и молекулярной массы учитывается при производстве ориентированных кристаллических полимеров (волокна, пленки и т. д.). Если полимер для образования «шейки» требует применения слишком высоких температур, то того же результата можно достигнуть путем замены этого полимера, не способного к вытяжке без разрыва образца, более высокомолекулярным материалом того же строения.[5, С.457]

Деформации каучука и резины имеют особенность, заключающуюся в том, что величина напряжения и деформации зависит от скорости деформации и продолжительности действия деформирующей силы. Эта особенность релаксационного характера деформации каучука проявляется в релаксации напряжения, ползучести (крип), упругом последействии.[1, С.98]

Кристаллические полимеры под влиянием приложенного напряжения могут подвергаться значительным деформациям (до 1000%). В течение длительного времени полагали, що деформация кристаллических полимеров (например, полиамидов) носит в основном необратимый характер, т. с. обусловлена развитием процессов течения. Это заключение основывалось па том, что растянутый образец полимера при нагревании выше температуры плавления не восстанавливал своих первоначальных размеров. Однако это не является доказательством необратимого характера деформации полиамида, поскольку, вследствие сравнительно невысокого молекулярного веса Этого полимера, при нагревании он переходит не в нысокоэластическое, а в вязкстекучее состояние, характеризующееся необратимыми деформациями. Если образец полиамида после вытяжки при комнатной температуре обработать формальдегидом, то вследствие образования пространственной сетки он при нагревании переходит не н текучее, а в высокоэластическое состояние, и холодная вытяжка оказывается полностью обратимой. Следовательно, большие деформации кристаллических полимеров могут быть и обратимыми.[4, С.217]

Кристаллические полимеры под влиянием приложенного напряжения могут подвергаться значительным деформациям (до 1000%). В течение длительного времени полагали, що деформация кри* еталличсских полимеров (например, полиамидов) носит в основном необратимый характер, Т- с. обусловлена развитием процессов течения^ Это заключение основывалось па том, что растянутый образец полимера при нагревании выше температуры плавления lie восстанавливал своих первоначальных размеров. Однако это не является доказательством необратимого характера деформации полиамида, поскольку, вследствие сравнительно невысокого молекулярного веса Этого полимера, при нагревании он переходит не в высокоэластическое, а в вязкотекучее состояние, характеризующееся необратимыми деформациями, Нсли образец полиамида после вытяжки при комнатной температуре обработать формальдегидом, то вследствие образования пространственной сетки он при нагревании переходит не R текучее, а в высокоэластическое состояние, и холодная вытяжка оказывается полностью обратимой. Следовательно, большие деформации кристаллических полимеров могут быть и обратимыми.[2, С.217]

Вид функции / (К) зависит от характера деформации: при растяжении[7, С.154]

Старение зависит от вида, величины и характера деформации. Наименьшее влияние на скорость старения оказывает статическое сжатие. С увеличением напряжения число трещин при озонном растрескивании растет, а средний размер их уменьшается.[3, С.177]

Усталостная прочность резин зависит от характера деформации, режима нагружения, амплитуды деформации, ее частоты.[3, С.137]

Клейне-Альберс [220], исследуя зависимость характера деформации поливинилхлорида от температуры,-показал, что цепи макромолекул поливинилхлорида, расположенные хаотично, при растяжении полимера начинают ориентироваться относительно друг друга только при повышенных температурах. При темп, от —40 до +20° поливинилхлорид обладает только упругой деформацией и при его растяжении не наблюдается какой-либо ориентации молекул. При нагревании ненагруженного образца поливинилхлорида выше температуры стеклования (~80°) происходит молекулярная перегруппировка и степень регулярности и компактности структуры полимера увеличивается [221]. Дифференциальным термическим анализом установлено, что при 55° поливинилхлорид имеет точку перехода, при прохождении которой наблюдается выделение тепла. При дальнейшем нагревании происходящие в полимере процессы имеют эндотермический характер вплоть до плавления полимера [222].[9, С.368]

Характер деформации. Сдвиг гк также может произойти при изменении характера деформации, например при переходе от одноосной к двухосной деформации. В последнем случае ориентация развивается в меньшей степени, чем при одноосной деформации, и область SK практически исчезает (рис. 189).[6, С.328]

При температурах, близких к температурам правления, наблюдается изменение характера деформации, и деформационная кривая имеет вид, характерный для аморфных полимеров.[2, С.219]

Одна из труДнейших задач, которую приходится решать при конструировании смесителя, — это обеспечение такого характера деформации материала, при котором время смешения было бы одинаково для любого начального размещения компонентов 19.[7, С.179]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Белозеров Н.В. Технология резины, 1967, 660 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
4. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
5. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
6. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
7. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
8. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
9. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.

На главную