На главную

Статья по теме: Увеличением напряжения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При увеличении содержания изоцианата наряду с увеличением напряжения и твердости происходит постепенное снижение сопротивления разрыву и относительного удлинения. Сопротивление раздиру увеличивается, достигая максимума при содержании МДИ 28,7%, после чего начинает уменьшаться.[6, С.56]

Увеличение скорости деформации, сопровождающееся увеличением напряжения, приводит в определенный момент полимерную систему в состояние, когда скорость разрыва связей под действием теплового движения становится меньше скорости накопления высокоэластической деформации. Поскольку с увеличением высокоэластической деформации возрастает и скорость ее релаксации, процесс накопления обратимой деформации прекращается тогда, когда устанавливается динамическое равновесие, при котором скорость накопления высокоэластической деформации и скорость ее рассасывания уравниваются. Развитие деформации сопровождается дополнительными затратами энергии, что также вызывает некоторое увеличение напряжений сдвига.[15, С.87]

При низких значениях ri экструдат ПЭВП имеет гладкую поверхность, С увеличением напряжения до предкритических значений она становится более шероховатой и начинает походить сначала на «акулью кожу», а затем приобретает винтовую форму. Вслед за этим происходит очень сильное искажение формы экструдата, сопровождающееся резкими колебаниями давления при постоянном расходе. Таким образом, в области сильных искажений поверхности появляются разрывы (или скачки) на кривой течения. При более высоких напряжениях (скоростях течения) поверхность экструдата снова становится гладкой. Это явление можно использовать при высокоскоростном формовании полимеров, например при нанесении покрытий на проволоку и формовании ПЭВП методом раздува. Уменьшение L/D0 либо не оказывает влияния на величину искажений формы экструдата, либо усиливает их [44].[2, С.477]

По аналогии с термином «вынужденная эластичность» переход от высокоэластического к вязкотекучему состоянию с увеличением напряжения можно было бы назвать «вынужденной текучестью». Понятно, что с повышением температуры и с уменьшением скорости деформации предел текучести уменьшается, так как разрушение временных узлов облегчается.[11, С.122]

В области напряжений, где происходит упрочнение полимера за счет увеличения молекулярной ориентации, величина Рс с увеличением напряжения сдвигается в сторону меньших концентраций агрессивного агента. Это наблюдается, например, при испытании резины из СКС-30-1 в растворе НС1. При о=15 кгс/см2 (средняя деформация около 100%) Рс^0,4 н., в то время как для о = 84 кгс/см* (средняя деформация примерно 400%) Рс~0,2 н., т. е. в 2 раза меньше (см. кривые 4 и 5 на рис. 198). Величина ак для этой резины в соляной кислоте равна около 120%.[11, С.344]

Механизмы неньютоновского течения разделяются на две основные группы [8]: активационные и ориентационные. Механизмы первой группы могут реализоваться и без разрушения структуры (механизм Эйринга, учитывающий, что энергия вязкого течения снижается с увеличением напряжения сдвига), но главным образом они идут с разрушением структуры и уменьшением энергии активации (механизм Ребиндера [6.2], учитывающий, что для перехода от изменившейся структуры к исходной после снятия нагрузки требуется время тиксотропного восстановления). Время релаксации-т процесса тиксотропного восстановления разрушений структуры вещества определяется [6.3; 6.4] соотношением[3, С.148]

Поведение расплава полипропилена качественно отличается от описанного: угол входа потока очень велик — почти 180° и поверхность экструдата имеет правильную винтовую форму. Поверхность экструдата ПЭНП при близких к критическому значениях т^ становится матовой. С увеличением напряжения сдвига в узком диапазоне -т^ искажение формы экструдата усиливается, и он принимает форму спирали. Помутнению поверхности экструдата соответствует очень малый угол входа; при этом в области входа образуются устойчивые вихри. При высоких напряжениях сдвига линии тока в капилляре приобретают спиральную форму, а при критическом значении напряжения в области «рюмки» —• разрываются.[2, С.477]

В гл. 8 была рассмотрена главным образом роль перестройки пространственно-однородного распределения молекулярной структуры в процессе зарождения разрушения. Термин .пространственно-однородный означает отсутствие дефектов, включений, трещин или надрезов, размеры которых достаточны, чтобы служить концентраторами напряжений. При таких условиях распределение очагов повреждений и их рост на начальной стадии внешнего нагружения однородно по объему образца. В таком случае неоднородное разрушение определяется как процесс, противоположный однородному разрушению, или как процесс разрушения, вызываемого распространением трещины. В данном случае трещины, надрезы, включения или сконцентрированные зародыши трещин действуют как концентраторы макроскопического напряжения, которые, по существу, ограничивают дальнейший рост повреждения ближайшим окружением имеющихся там дефектов. Явление образования трещины серебра включено в данную главу в связи с хорошо различимыми в ней структурными неоднородностями и несмотря на тот факт, что новые трещины серебра могут формироваться с увеличением напряжения в произвольных местах, где имеются зародыши.[1, С.332]

Рост трещины при разрыве под действием постоянной нагрузки сопровождается постепенным увеличением напряжения а. Это, в свою очередь, резко увеличивает скорость роста трещины и определяет самоускорение развития трещины.[12, С.231]

Старение зависит от вида, величины и характера деформации. Наименьшее влияние на скорость старения оказывает статическое сжатие. С увеличением напряжения число трещин при озонном растрескивании растет, а средний размер их уменьшается.[8, С.177]

Физический смысл механизма, определяющего влияние напряжения на вязкость, по Эйрингу, заключается в том, что энергия активации снижается с увеличением напряжения сдвига по некоторому закону. Это можно увидеть, если уравнение (6.3) представить в иной форме:[3, С.149]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Белозеров Н.В. Технология резины, 1967, 660 с.
5. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
6. Wright P.N. Solid polyurethane elastomers, 1973, 304 с.
7. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
8. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
9. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
10. Серков А.Т. Вискозные волокна, 1980, 295 с.
11. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
12. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
13. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
14. Северс Э.Т. Реология полимеров, 1966, 199 с.
15. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
16. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
17. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
18. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
19. Виноградов Г.В. Реология полимеров, 1977, 440 с.
20. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
21. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
22. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
23. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
24. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
25. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
26. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
27. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
28. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную