На главную

Статья по теме: Вынужденная эластичность

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Вынужденная эластичность при сдвиге, т. е. начало сильных межсегментальных смещений в неориентированном термопласте, отчетливо проявляется на кривой напряжение—деформация. В испытаниях на растяжение обычно имеет место падение условного напряжения, а точку вынужденной эластичности определяют как точку максимума нагрузки (рис. 2.10, кривые б и е). В других видах испытания, например в испытаниях на сжатие, может происходить падение нагрузки или его может не быть совсем, но всегда можно отметить резкое уменьшение do/de. Важное явление вынужденной эластичности интенсивно исследовалось. Обзорные статьи по данному вопросу публиковались в последние годы почти ежегодно, например [114, 154—164].[2, С.303]

В экспериментах, проведенных при различных температурах, скоростях деформации и гидростатических давлениях, было установлено, что вынужденная эластичность при сдвиге является термически активационным процессом [154—168, 170—173]. Согласно потоковой теории Эйринга (гл. 3), скорость деформации может быть представлена в виде[2, С.304]

Ответ. Макромолекулы целлюлозы представляют собой сравнительно жесткие цепи, изменение конформаций которых в твердом состоянии весьма затруднено вследствие интенсивного внутри- и межмолекулярного взаимодействия. Вынужденная эластичность целлюлозы незначительна. Полиэтиленте-рефталат является более гибкоцепным полимером, чем целлюлоза, и вынужденная эластичность его весьма велика.[1, С.136]

Все предложенные объяснения явления вынужденной эластичности сводятся к тому, что это явление вызвано смещением сегментов соседних цепей при изменении конформацион-ного состояния последних. В процессе вынужденной эластичности неориентированных термопластов в цепях не образуется больших осевых напряжений и даже не обнаруживается никакого разрыва цепей при деформациях, меньших деформации вынужденной эластичности ъу. Вынужденная эластичность соответствует началу сильного ориентационного деформирования. Обычно она сопровождается уменьшением сопротивления материала деформированию, уменьшением поперечного сечения образца в плоскости, перпендикулярной к направлению пластического растяжения, и повышением температуры вследствие частичного превращения механической работы в тепло. Ослабление материала и его термическое размягчение при постоянном значении истинного напряжения приводят к пластической нестабильности. При растяжении образца вдоль его оси эта нестабильность становится очевидной вследствие[2, С.305]

Исследования влияния ориентации цепи на начало роста трещины серебра показывают, что поперечная ориентация цепей по отношению к направлению действия главного напряжения ускоряет начало роста такой трещины [89, 153]. Поскольку меньшее число цепных сегментов ориентировано в направлении главного напряжения, критические локальные деформации достигаются при меньших напряжениях (гл. 3, разд. 3.4.5). В то же время напряжение начала роста трещины серебра возрастает с увеличением степени соосности цепей в направлении действия напряжения (увеличение степени ориентации, малый угол 9 между направлениями вытяжки и главным напряжением). При достаточной соосности цепей напряжения начала роста трещины серебра будут выше напряжения вынужденной эластичности при сдвиге, так что трещины серебра не образуются. В образцах ПС при 20°С вынужденная эластичность при растяжении происходит при значении удлинения Я = 2,6 или более, а также если 9(Я) меньше 20—30° [153]. Особого упоминания заслуживает результат Холла и Хорса [153], заключающийся в том, что ориентация молекул оказывает лишь слабое влияние на ориентацию плоскости с трещиной серебра.[2, С.374]

Вынужденная эластичность при сжатии[2, С.415]

Вынужденная эластичность 330[2, С.431]

Вынужденная эластичность 156[3, С.217]

Вынужденная эластичность, так же как и высокая эластичность, зависит,от скорости дефорлшции, что указывает па ее релаксационный характер. Чем больше скорость деформации, тем боль* ше напряжение, вызывающее вынужденную эластичность. Это означает, что предел вынужденной эластичности с увеличением скорости дефориацгт повышается. Можно вывести следующую эмпирическую зависимость между <ув и скоростью деформации ъ\[5, С.212]

Вынужденная эластичность, так же как и высокая эластичность, зависит .от скорости дефор.мации, что указывает па ее релаксационный характер. Чем больше скорость деформации, тем больше напряжение, вызывающее вынужденную эластичность. Это означает, что предел вынужденной эластичности с увеличением еыэрости деформации повышается. Можно вынести следующую эмпирическую зависимость между <тв и скоростью деформации v. oe = B-i-c!nw (3)[7, С.212]

Вынужденная эластичность полимерных стекол. Характерной особенностью полимерных стекол с жесткими цепями является «рыхлость» структуры и принципиальная возможность движения нефиксированных звеньев даже в стеклообразном состоянии. Этим объясняется пониженная хрупкость подобных стекол по сравнению с низкомолекулярными, где небольшие молекулы могут взаимно перемещаться только как одно целое н где всякое заметное возрастание расстояния между макромолекулами или другими структурными элементами, превышающее границы межмолекулярного взаимодействия, означает, по существу, начало разделения образца на его составные части, его разрушение. Хрупкость обусловлена не столько пониженной прочностью материала, сколько неспособностью его даже к малым деформациям: у эластичного каучука разрушающее напряжение даже ниже, чем у хрупкого силикатного стекла.[8, С.411]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
6. Бартенев Г.М. Физика полимеров, 1990, 433 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
9. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
10. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
11. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
12. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную