На главную

Статья по теме: Условного напряжения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Анализ полученных данных показывает некоторое уменьшение условного напряжения при 300% удлинении, что может быть повышено снижением содержания в рецепте мяг-чителя масла ПН-бш. В то же время, прочностные свойства резин остаются на уровне серийных, тоща как сопротивление раздиру и усталостная выносливость существенно возрастают. Весьма заметно также возрастание сопротивления истиранию резин при обычных условиях и после старения, что представляет большое значение для протекторных резин. Эти данные свидетельствуют о целесообразности применения олигомеров в шинных резиновых смесях для улучшения основных технических характеристик резин.[5, С.354]

Вынужденная эластичность при сдвиге, т. е. начало сильных межсегментальных смещений в неориентированном термопласте, отчетливо проявляется на кривой напряжение—деформация. В испытаниях на растяжение обычно имеет место падение условного напряжения, а точку вынужденной эластичности определяют как точку максимума нагрузки (рис. 2.10, кривые б и е). В других видах испытания, например в испытаниях на сжатие, может происходить падение нагрузки или его может не быть совсем, но всегда можно отметить резкое уменьшение do/de. Важное явление вынужденной эластичности интенсивно исследовалось. Обзорные статьи по данному вопросу публиковались в последние годы почти ежегодно, например [114, 154—164].[1, С.303]

Описанное в предыдущем разделе деформирование сложных структур полимеров включает несколько различных по свойствам характерных стадий — от линейноупругой до высоковязкой. На рис. 2.10 для температурного интервала, в котором не проявляются высокоэластические свойства, приведены примеры различных видов поведения термопластов при квазистатическом одноосном деформировании. Кривая / зависимости напряжение — деформация для хрупкого полимера (полистирол при комнатной температуре) характеризуется ограниченной растяжимостью и крутым плавным ростом напряжения. Кривая 2 относится к слабоэластичному полимеру (пленка ламеллярного полипропилена [58]), в котором сочетаются явно упругие свойства с хорошей растяжимостью при высоких значениях напряжения и почти полной деформационной обратимости (в течение нескольких суток). Кривая 3 соответствует пластичному полимеру. Первоначальное монотонное возрастание условного напряжения, как правило, является менее крутым, чем для хрупкого полимера, т. е. в данном случае секущий модуль меньше. Условное напряжение а достигает максимума при пределе вынужденной эластичности, который определяет начало так называемой холодной вытяжки, на что указывает уменыпе-[1, С.36]

Рис. 4 6 Зависимость условного напряжения / от степени растяжения Я для идеального (/) и реального (2) эластомеров[2, С.251]

В оптимуме вулканизации резины, завулканизованные с помощью полимерной серы производства АО "Химпром", превосходят другие резины по величине условного напряжения при 300 % удлинении, условной прочности при растяжении, сопротивлению раздиру[4, С.160]

В работе [198] установлено активизирующее влияние тиокола НВБ-2 (м.м.=2200-2700, содержание концевых SH-rpynn 3,0-4,3 %) на сульфенамидный ускоритель сульфенамид М. При этом происходит экстремальный рост условной прочности при растяжении, условного напряжения при 300 % в зависимости от концентрации тиокола (Рис. 12).[4, С.188]

По методу В (ГОСТ 9.030—74) определяют стойкость резин к воздействию агрессивных жидких сред в ненапряженном состоянии по изменению одного или нескольких физико-механических показателей. Образцы отбирают согласно ГОСТ 269—66. Их форма, размеры и методы испытаний соответствуют ГОСТам на определение физико-механических свойств — условной прочности при растяжении, относительного удлинения в момент разрыва, условного напряжения при заданном удлинении (ГОСТ 270—75), сопротивления раздиру (ГОСТ 262—79), твердости по Шору А (ГОСТ 263—75) и др.[3, С.206]

На Московском шинном заводе ученые НИИШПа [272] внедрили в производство радиальных шин рецептуру высокомодульной брекерной резины с комбинацией РУ и АГ-306. Продукт АГ-306 является многокомпонентным веществом с малым содержанием кобальта (2,5±0,2 %) и бора (1,3±0,2 %), он экологически безвреден и представляет собой непылящий порошок, имеющий стабильные физико-химические характеристики. При изготовлении и переработке резиновых смесей, содержащих АГ-306, выделение летучих продуктов практически отсутствует. АГ-306 ускоряет вулканизацию, увеличивает степень вулканизации и уменьшает реверсию. Физико-механические показатели бре-керных резин на основе СКИ-3 с разными промоторами приведены в таблице 2.103. В присутствии АГ-306 образуются микрогетерогенные вулканизационные узлы, что способствует увеличению условной прочности при растяжении (ар); условного напряжения при 300 % удлинении (Езоо), твердости. АГ-306 связывает аммиак и низкомолекулярные амины, образующиеся в резинокордной системе при вулканизации, что обеспечивает[4, С.247]

Другой способ нахождения W1 заключается в следующем: при данной скорости деформации находим экспериментальную зависимость условного напряжения / от кратности растяжения К[6, С.235]

В этом случае свойства материала описываются уже с помощью трех констант Сг, С 2 и С3 или С'г, С г, С'3. В частности, для одноосного растяжения этот потенциал предсказывает следующую зависимость условного напряжения ас от степени удлинения:[7, С.64]

уровня условного напряжения, оно называется пластическим деформированием, хотя с точки зрения молекулярной структуры оно не соответствует пластической деформации металлов. На начальном участке после предела вынужденной эластичности деформирование ПЭ большей частью не вызывает механически необратимое течение. В области деформаций до ~50 % ламеллярные кристаллы смещаются и ориентируют свои а-оси перпендикулярно направлению вытяжки. с-Оси (цепей) принимают предпочтительный угол 35—40° по отношению к направлению вытяжки. Однако последняя ориентация обратима,[1, С.42]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
3. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
4. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
5. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
6. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
7. Виноградов Г.В. Реология полимеров, 1977, 440 с.
8. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.

На главную