На главную

Статья по теме: Характера взаимодействия

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для оценки характера взаимодействия полимера с частицами наполнителя и определения энергии связи может быть использован метод элюирования полимера из наполненной системы [195]. Наличие химических связей между компонентами системы в ряде случаев может быть выявлено по потере способности к растворимости. Например, дублированные образцы хлорсульфополиэти-лен — сополимер бутадиена, стирола и амида метакриловой кислоты, а также хлорсульфополиэтилен — бутадиен-нитрильный[19, С.29]

Для выяснения характера взаимодействия полимера с поверхностью субстрата иногда исследуют десорбцию. Таким способом удалось обнаружить, что поливинилацетат, адсорбированный на порошке железа, не десорбируется полностью [147], а при адсорбции на целлюлозе совершенно не десорбируется [211]. Адсорбция полиметакрилата на угле, окиси алюминия, стекле, железном порошке — необратима [142, 212]. То же относится к адсорбции полиэфиров на угле [142, 143], бутадиен-стирольного каучука на газовой саже [213], стеариновой кислоты на окиси алюминия [214], сополимера винилхлорида с винилацетатом и мет-акриловой кислотой на двуокиси титана [216], карбоксилатпого каучука на высокодисперсных порошках металлов [215], различных полимеров на коллоидных металлах [76, с. 7]. Необратимость процесса адсорбции свидетельствует о возникновении достаточно прочных связей молекул полимера с твердой поверхностью.[19, С.29]

Полуколичественную оценку характера взаимодействия полимера -с поверхностью наполнителя можно дать на основании данных табл. III. 1 и рис. III. 4. При введении в. ПУ-1 и ПУ-2 наполнителей с различной природой поверхности наблюдается уменьшение скачка теплоемкости ДСР при стекловании (в расчете на 1 г полимера), что позволяет рассчитать толщину граничного слоя по приведенным выше формулам. Оценка толщин граничных слоев (Аг) для ПУ-2 по скачкам теплоемкости при раздельном стекловании гликолевых и диизоцианатных участков звена (см. таблицу) показывает, что Ал больше в области гликолевых, чем в области циизоцианатных участков. Данные о влиянии наполнителя на Тс и толщины граничных слоев позволяют сделать вывод о том, что в случае полимерных цепей, состоящих из участков различного химического строения, возможно селективное взаимодействие отдельных участков цепи с поверхностью твердого тела.[13, С.98]

Глубина, на которую распространяется действие поверхностных сил, зависит от характера взаимодействия. Если взаимодействие обусловлено ван-дер-ваальсовыми силами, то толщина слоя ограничена 2—3 слоями ближайших соседей, так как эти силы убывают пропорционально примерно седьмой степени расстояния [1]. Однако процессы взаимодействия на границе раздела не ограничиваются ван-дер-ваальсовыми силами. Несимметричные полярные молекулы, к которым относятся как эпоксидные олигомеры, так и отвердители, ориентируются определенным образом под действием поверхностных сил [1], причем эта ориентация не ограничивается мономолекулярным слоем. Таким образом, поверхность оказывает ориентирующее действие уже на олигомерное связующее, причем можно ожидать, что с ростом молекулярной массы олигомера в ходе отверждения толщина ориентированного слоя будет возрастать. Количественную оценку глубины ориентирующего действия поверхности наполнителя в настоящее время нельзя сделать, но исходя из данных о размерах глобул в эпоксидных смолах (см. гл. 3), нельзя ожидать, что она будет более 1000 А.[8, С.89]

Действительно, как адсорбция, так и адгезия (в равновесном ее понимании) зависит от характера взаимодействия функциональных групп полимера с поверхностью, формы молекулы и пр. Однако условия возникновения адгезионной связи сильно отличаются от условий взаимодействия полимера и адсорбента в растворе. При адсорбции из растворов происходит конкуренция за места на поверхности между молекулами полимера и растворителя, которая снижает величину адсорбции полимера и прочность его связи с поверхностью.[12, С.174]

Механические свойства коагуляционных дисперсных структур зависят от геометрии частиц, от свойств дисперсной фазы и дисперсионной среды, а также, в особенности, от характера взаимодействия между частицами. Модифицирование поверхности частиц, использование физической адсорбции поверхностно-активных веществ и хемосорбции является эффективным средством изменения механических свойств коагуляционных структур. При этом наибольшее повышение прочности достигается при некотором оптимальном соотношении энергий взаимодействия между частицами дисперсной фазы, молекулами дисперсионной среды и взаимодействия молекул дисперсионной среды с частицами дисперсной фазы. Такое оптимальное соотношение обычно достигается при частичной адсорбционной или химической лиофилизации поверхности дисперсной фазы, причем поверхность частиц принимает мозаичный характер, оказывается состоящей из лиофильных и лиофобных участков [38]. Вопросы образования коагуляционных структур и влияния на их прочность адсорбционного и химического модифицирования имеют большое значение для теории и практики использования активных наполнителей в технологии полимеров, а также для разработки оптимальных приемов армирования пластиков волокнистыми дисперсными структурами.[16, С.23]

При смешении разнородных молекул, не сопровождающемся уменьшением их гибкости, энтропия системы возрастает (AS !> 0). Изменение энтальпии при смешении будет зависеть от характера взаимодействия компонентов.[9, С.8]

Вязкость >астворов при повышении температуры снижается, У. приччм особенно интенсивно } более концентрированных растворов (рис 6.13) Вязкость растворов полимером зависит от состава раствора, прмс\тствин посторонних веществ, характера взаимодействия растворите тя с полимером. Чем лучше полимер растворяет», я в жидкости, тем больше его уровень сольватации. Вследствие этого снижаются чожмо.1ск\лярное взаимодействие .меж'1\ макрочо.'кку 1ачи, затрудняется их свертыианне в ком-[3, С.413]

Напряжение, при котором начинается заметное образование микронадрывов, определяется прочностью связи между каучуком и ингредиентами резиновой смеси, а также условиями релаксации перенапряжений, зависящих в значительной мере от характера взаимодействия между частицами сажи и каучуком. Время, в течение которого развивается разрыв образца, а следовательно, и рост напряжения, способного вызвать заметную дополнительную ориентацию, практически не зависит от степени наполнения. При этом максимальные значения степени дополнительной ориентации в месте разрыва очень малы как в ненаполненных, так и в наполненных термической сажей вулканизатах. Можно пред-[11, С.216]

Как известно, невулканизованная резиновая смесь представляет собой каучуковую эластичную матрицу, в которой более или менее равномерно распределены частицы сажи (рис. 1). Свойства резиновых смесей и вулканизатов сильно зависят от характера взаимодействия каучука с активным наполнителем, так как[1, С.72]

Формование изделий, т. t. переработка полимеров, до настоящего времени проводилось довольно примитивно. В действительности же технология переработки полимеров —это сложная область, требующая знания физико-химических основ процесса, понимания характера взаимодействия полимеров с вспомогательными веществами, умения придать этому полимерному материалу определенную структуру.[2, С.10]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
4. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
5. Ахмедов К.С. Водорастворимые полимеры и их взаимодействие с дисперсными системами, 1969, 89 с.
6. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
9. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
12. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
13. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
14. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
15. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
16. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
17. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
18. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
19. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
20. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
21. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
22. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
23. Виноградов Г.В. Реология полимеров, 1977, 440 с.
24. Алмазов А.Б. Вероятностные методы в теории полимеров, 1971, 152 с.
25. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
26. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
27. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
28. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
29. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
30. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
31. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
32. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.
33. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную