На главную

Статья по теме: Характерных особенностей

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Некоторые из наиболее важных характерных особенностей этю?: гелей зависят от амфотерных свойств желатины. Гель реагирует с кислотами и основаниями, причем последние распределяются между студнем и внешней фазой согласно доннановскому равнове-[10, С.243]

Как уже было показано выше, одной из характерных особенностей высокоэластического состояния является способность макромолекул изменять форму под действием внешних сил (кон-формационные превращения). Благодаря этому деформации образцов, развивающиеся под действием внешних сил, достигают сотен, а в некоторых случаях свыше тысячи процентов. Эти деформации обратимы. Растяжение полимеров, находящихся в высокоэластическом состоянии, сопровождается выделением тепла. Равновесное соотношение между деформирующим напряжением и деформацией устанавливается не сразу, а с течением времени.[9, С.101]

Свойства древесины во многом определяются ее структурой, которой присущ ряд характерных особенностей. Древесина имеет волокнистую структуру, так как основная масса клеток относится к прозен-химным. Чередование ранней и поздней древесины образует слоистую структуру древесины. Анатомические элементы и ткани древесины ориентированы определенным образом в стволе дерева (волокна, сосуды, лучевая и древесная паренхимы, вертикальные и горизонтальные смоляные ходы).[7, С.253]

Продукт взаимодействия каучука с серой носит название в у л к а н и з а т а. Способность вулканизоваться является од ной из характерных особенностей каучуков (насыщенные поли меры не способны вулканизоваться серой).[3, С.66]

Для изучения миграции веществ из резин, контактирующих с биологическими средами, выбирают модельные среды с учетом наиболее характерных особенностей биологических объектов. В качестве основного и обязательного модельного раствора используют дистиллированную воду, преимуществами которой является простота, однородность и стабильность состава. В условиях моделирования, в зави-[6, С.554]

Кривые напряжения сверхвысокопрочных/высокомодульных волокон аналогичны соответствующим кривым для стекла и стали. Исходя из характерных особенностей, т. е. 'принимая во внимание их меньший удельный вес по сравнению со стеклом и сталью, можно сделать вывод, что волокна из палочкообразных ароматических полимеров оказываются более прочными и жесткими, чем стекло и сталь. В сочетании эти свойства показывают, что такие волокна целесообразно применять для армирования жестких и гибких композиционных материалов. Например, установлено, что волокно кевлар пригодно для шинного корда как заменитель брекеров из стали и стекловолокна в диагональных и радиальных шинах. В жестких композиционных материалах уже начали использовать волокно кевлар-49, оказавшееся по своим свойствам сравнимым с более низкомодульными типами графитовых волокон. Волокна из ароматических полимеров пригодны также для изготовления конвейерных лент, клиновидных ремней, тросов, кабелей; защитной одежды; внутренних панелей, внешних обтекателей, рулевых поверхностей и частей конструкций в самолетостроении; антенн и других узлов радиолокаторов; щитов управления; покрытий для судов; лопастей воздуходувок; спортивного инвентаря — лыж, клюшек для гольфа, досок для серфинга; тканей с пропиткой для 'использования в строительных целях. Свойства и практическое применение волокон кевлар подробно описаны в работе [41].[12, С.176]

Суммируя приведенные выше результаты исследований, выполненных на чистых металлах (Си, Ni, Fe) и однофазных А1 сплавах, можно выделить ряд характерных особенностей дефектной структуры наноструктурных материалов, полученных ИПД. При этом отметим также, что просвечивающая электронная микроскопия, в том числе высокоразрешающая, рентгеноструктурный анализ и мессбауэровская спектроскопия являются взаимно дополняющими методами исследований, где первые (просвечивающая, включая высокоразрешающую, электронная микроскопия) дают локальную информацию, в частности об индивидуальных границах зерен, а вторые (рентгеноструктурный анализ и мессбауэ-рография) — усредненную информацию о структуре материалов. Вместе с тем результаты этих исследований не противоречат, а дополняют друг друга.[4, С.86]

Кинетическая схема радикальной полимеризации ВА включает стадии инициирования, роста, передачи и обрыва цепи. Достаточно полное описание кинетики полимеризации В А приведено в [11], мы же ограничимся здесь рассмотрением некоторых характерных особенностей реакции полимеризации этого мономера, оказывающих влияние на свойства получаемого ПВА.[8, С.9]

Типичные представители уретановых эластомеров имеют высокие напряжения при удлинении, сопротивление раздиру, стойкость к набуханию в различных средах, к действию окислителей и. радиации. По износостойкости они превосходят известные в настоящее время полимерные материалы. Одной из характерных особенностей этих полимеров является сочетание высокой эластичности с широким диапазоном твердости: от 10 по Шору А до 70 по Шору Д. Только в уретановых эластомерах достигаются высокая стойкость[2, С.19]

Типичные представители уретановых эластомеров имеют высокие напряжения при удлинении, сопротивление раздиру, евэа-кость к набуханию в различных средах, к действию окислителей и радиации. По износостойкости они превосходят известные в па-стоящее время полимерные материалы. Одной из характерных особенностей этих полимеров является возможность сочетания высокой эластичности с широким диапазоном твердости: от 10 по Шору А до 60 по Шору Д.[1, С.523]

При взаимодействии окислителя (инициатора) с восстановителем (активатором) образуется высокая концентрация промежуточных лабильных свободных радикалов, позволяющих проводить полимеризацию при низкой температуре с высокой скоростью. Как правило, наибольшая скорость полимеризации достигается при эквимолекулярном соотношении окислителя и восстановителя. Энергия активации реакции полимеризации в присутствии восстановителя понижается со 126 до 42 кДж/моль. Способность снижать энергию активации полимеризации — одно из основных и характерных особенностей окислительно-восстановительных систем, инициирующих эти процессы.[1, С.136]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
5. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
9. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
10. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
11. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
12. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
13. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
14. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
15. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
16. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
17. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
18. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
19. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
20. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
21. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
22. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.
23. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
24. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную