На главную

Статья по теме: Изменения молекулярной

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Оценку изменения молекулярной структуры трехмерных полимерии ь нродоосе механической обработки целесообразно начать с рассмотрения данных рентгеноетруктур'ного анализа. К сожалению, этих сведений в литературе почти нет, и ниже приведены только результаты собственных, ранее опубликованных иоследова-[16, С.342]

Эффекты изменения молекулярной подвижности в граничных слоях характерны не только для полимеров, но и для олигомеров • [219, 222]. Уменьшение подвижности при наполнении олигомеров также связано с уменьшением числа возможных конформаций, так как наблюдаемые эффекты слабо зависят от природы поверхности. В качестве еще одного доказательства этого важного положения можно привести следующие данные [232].[21, С.135]

На практике для оценки изменения молекулярной массы полимера используют средневязкостную молекулярную массу, которая по своей величине близка к средневесовой. Зависимость между характеристической вязкостью раствора [т]] и молекулярной массой растворенного полимера (М) определяется известным уравнением Марка — Куна — Хаувинка[4, С.34]

Задание. Объяснить причину изменения молекулярной массы полимера и написать основные уравнения реакций, протекающих в системе под действием облучения.[5, С.106]

Наряду с реакциями, протекающими без изменения молекулярной массы, для полимеров характерны также реакции, приводящие к изменению степени полимеризации. Их можно разделить на две группы: реакции, при которых молекулярная масса растет и при которых наблюдается ее снижение. К первой группе можно отнести реакции сшивания — соединение макромолекул поперечными связями (реакции вулканизации эластомеров, отверждение), получение блок- и привитых сополимеров.[7, С.174]

Определение коэффициента индукции, который показывает характер изменения молекулярной массы или характеристической вязкости полимера в индукционном периоде. Для этого определяют характеристическую вязкость исходного образца и ее значение после окончания индукционного периода; Киид вычисляется по формуле[9, С.416]

Это явление, наблюдающееся при переработке эластомеров, как известно, получило название пластикация. В зависимости от молекулярной структуры эластомера, содержания добавок изменения молекулярной структуры и вязкости могут быть различны. Так, линейный СКД, СКЭП и некоторые другие эластомеры в обычных условиях переработки не способны к пластикации, т. е. при их переработке средняя молекулярная масса каучука и эффективная вязкость практически не меняются. Переработка пластицирующихся каучуков (НК, СКИ-3, наирит, СКЭПТ, БСК и др.) сопровождается уменьшением средней молекулярной массы, изменяется исходная полидисперсность, уменьшается эффективная вязкость. Поскольку явления деструкции сопровождаются структурированием и в первом и втором случаях происходит увеличение разветвленности полимеров.[11, С.31]

На конечных стадиях при больших значениях рс экспериментальное разделение остальных двух фаз становится невозможным. Однако рс можно определить достаточно точно. Для оценки изменения молекулярной подвижности в процессе отверждения можно использовать время релаксации наиболее подвижной фазы, так[6, С.230]

Высокая когезионная прочность резиновых смесей НК обусловлена регулярным строением полимерных цепей и заметным содержанием — до 3%(мол.)—в макромолекулах НК полярных протеиновых групп; в то же время депротеинизированный (без изменения молекулярной массы) НК дает смеси с явно пониженной когезионной прочностью (кривая 4, рис. 2).[1, С.75]

По тем же соображениям следует ожидать анизотропии коэффициента теплопроводности в ориентированных аморфных полимерах в стеклообразном состоянии (рис. 5.8). Это может иметь значение в таких процессах переработки, как термоформование. Но оба этих эффекта — ориентации аморфных полимеров и изменения молекулярной массы — незначительно изменяют величину k.[3, С.120]

В области низких концентраций поперечных связей частота вращения парамагнитного зонда слабо зависит от метода вулканизации эластомера и густоты сетки. Сшивание макромолекул сказывается на частотах вращения при высокой концентрации узлов сетки, когда длина отрезка цепи сетки соизмерима с величиной кинетического сегмента полимера [50]. Зависимость эффективной энергии активации вращения зонда от концентрации поперечных связей установлена для полидиметилсилоксановых каучуков, вулканизованных у-облучением, бутадиеновых, вулканизованных быстрыми электронами, а также для серных и пероксидных вулканизатов каучука СКИ-3. При сшивании жесткоцепных полимеров гибкими поперечными мостиками изменения молекулярной подвижности не наблюдается, если длина мостика не настолько велика, чтобы вызвать пластификацию полимера.[9, С.294]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
9. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
10. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
11. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
12. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
13. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
14. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
15. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
16. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
17. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
18. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
19. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
20. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
21. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
22. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
23. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
24. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
25. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.

На главную