На главную

Статья по теме: Каталитического комплекса

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Дезактивация каталитического комплекса осуществляется подщелоченной водой или другими соединениями с подвижным атомом водорода. Одновременно добавляют и антиоксиданты. Дезактивация и введение антиоксиданта происходят при интенсивном перемешивании ввиду высокой вязкости реакционной массы », как правило, в безобъемных смесителях.[1, С.185]

Реакция сополимеризации проводится в реакторе 1, частично заполненном реакционной массой. Температура полимеризации обычно 20—40 °С, давление 0,3—0,6 МПа. В реактор поступает растворитель, мономеры, компоненты каталитического комплекса, а также циркулирующая газожидкостная смесь. Газовая фаза, содержащая этилен, пропилен, регулятор молекулярной массы и растворитель в количествах, определяемых динамическим равновесием между газом и жидкостью в реакторе, непрерывно выводится из аппарата и подается в конденсатор 2, где происходит ее охлаждение и частичная конденсация. Раствор полимера из реактора поступает в смеситель 3 для разрушения каталитического комплекса и смешения с водой. Иногда этой операции предшествует отдувка незаполимеризовавшегося этилена за счет снижения давления. Из смесителя 3 эмульсия раствор полимера — вода переводится в отстойник 4 для разделения водного и углеводородного слоев. Водный слой, содержащий продукты разрушения катализатора, подается на очистку, а частично после смешения со све-[1, С.306]

Полагают, что активный катализатор состоит из- комплекса V3+ — А1, который становится неактивным при восстановлении V3+ до V2+ [5, 8]. Скорость восстановления ванадия и степень дезакти-вации катализатора зависят от природы каталитической системы, соотношения между алюминийорганическим соединением и соединением ванадия, концентрации соединения ванадия, температуры, а также среды, в которой образуется каталитический комплекс и проводится процесс сополимеризации. Особо резкое падение активности наблюдается в первые минуты после приготовления каталитического комплекса (катализатор стареет). Так, катализатор, приготовленный из триацетилацетоната ванадия V(C5H7O2)3 и диэтилалюминийхлорида при 25°С, уже через несколько минут после приготовления обладает низкой активностью [6]. О степени дезактивации ряда других катализаторов при хранении можно судить по данным, приведенным на рис. 1 [9].[1, С.295]

С понижением температуры скорость дезактивации замед-^ляется [6, 8]. При старении катализатора образуются сополимеры (Г более высокой характеристической вязкостью [г\], чем на свежеприготовленном. Резкое изменение [ц] сополимеров (с 1,65 до 6,7 дл/г) с увеличением продолжительности старения наблюдали при сополимеризации на системе V^CsHrOab + (C2H5)2A1C1 при —20 °С [6]. Полагают, что это может быть обусловлено уменьшением концентрации активных каталитических комплексов. Исследования, проведенные на других катализаторах, не показали столь значительного увеличения [т]] сополимеров при выдерживании каталитического комплекса. Изменение длительности старения каталитического комплекса от 2 до 60 мин при сополимеризации этилена и пропилена на системах VC14 (или VOC13) + (ызо-С4Н9)2А1С1 ^привело к изменению [ц] сополимеров с 3,5—3,9 до 5,7—5,5 дл/г, v* в случае систем VC14 (или VOC13) + (C2H5)i,5AlCli,5 увеличе-[1, С.295]

При необходимости удаления остатков каталитического комплекса (кобальтовой и никелевой систем) раствор полимера отмывают водой в колоннах противоточного типа.[1, С.185]

Обрыв цепи осуществляется вследствие внутримолекулярной перегруппировки с регенерацией активного каталитического комплекса, способного вновь возбудить полимеризацию изобутилена:[1, С.329]

Тяжелая фракция эпоксида из куба колонны 21 (см. рис. 42) подается в колонну / (рис. 44) отгонки тяжелой фракции от каталитического комплекса. Колонна ~/ обогревается паром через выносной кипятильник 2. Часть кубовой жидкости колонны / — каталитический комплекс с тяжелым остатком — возвращается для приготовления катализатора, а другая часть (примерно 40% от общего потока) направляется для окончательного разложения гидропероксида этилбензола.[2, С.107]

При решении задачи выбора оптимальных конструктивных характеристик аппаратов необходимо еще учесть расход компонентов каталитического комплекса, мономеров и качество получаемого каучука. Поэтому уравнения (9) — (12) должны решаться совместно с уравнением, определяющим среднюю продолжительность пребывания полимеризуемой смеси в системе последовательных реакторов:[1, С.310]

Сополимеризация проводится в реакторе 14 при температуре —20°-=-+20°С и давлении, определяемом концентрацией мономеров в зоне реакции и температурой. В реактор вводят компоненты каталитического комплекса, этилен, пропилен и третий мономер. Газовая фаза, состоящая в основном из пропилена (около 80%), этилена и водорода, забирается компрессором 15, сжимается и подается в конденсатор 16. Суспензия каучука в пропилене непрерывно выводится на дальнейшие стадии переработки.[1, С.308]

Как и в случае полимеризации ациклических соединений катализаторами Циглера — Натта, скорость полимеризации циклоолефинов, микроструктура и молекулярная масса образующегося полимера определяются не только природой компонентов катализатора, но и их мольным отношением и условиями приготовления каталитического комплекса.[1, С.319]

Технологическое оформление процессов получения изопреновых каучуков с использованием различных каталитических систем не имеет принципиальных отличий. Так, процесс получения изопрено-вогО каучука СКИ-3 в растворе изопентана состоит из следующих основных операций: осушка растворителя; приготовление каталитического комплекса; полимеризация изопрена; дезактивация катализатора; отмывка и стабилизация полимеризата; выделение каучука из растворителя; выделение каучука из пульпы; сушка и упаковка каучука. Вспомогательными операциями являются: приготовление суспензии стабилизатора и раствора стоппера; приготовление компонентов антиагломератора; азеотропная осушка возвратного растворителя; отгонка фракции С4 и ректификация изопентан-изопреновой фракции.[2, С.127]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кирпичников П.А. Альбом технологических схем основных производств промышленности синтетического каучука, 1986, 225 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Труды Л.Х. Мономеры. Химия и технология СК, 1964, 268 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
7. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
8. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
9. Амброж И.N. Полипропилен, 1967, 317 с.
10. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
11. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
12. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
13. Абызгильдин А.Ю. Графические модели основных производств промышленности синтетического каучука, 2001, 142 с.
14. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
15. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
16. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
17. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
18. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
19. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
20. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
21. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
22. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
23. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
24. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную