На главную

Статья по теме: Кинетические константы

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Были предприняты попытки оценить константы скорости роста цепи Ц, при полимеризации изобутилена. Так, в [271] рассчитана вероятная константа скорости его полимеризации на свободных ионах (в присутствии твердого ZnO): kp= 1,5-108 л/(моль-с) (273 К). Близкая к этому значению kp получена в [219] при блочной полимеризации изобутилена под действием у-излучения 60Со, причем в интервале 300-135 К температурная зависимость скорости полимеризации существенно мала при значениях kp = 3-Ю6 л/(моль-с) и k0 = 3-Ю2 сг1 (А1С13-СН3С1 в СН3С1, 195 К). Естественно, что имеющиеся кинетические константы и, в первую очередь kp, являются приближенными, хотя существенно высокий их порядок не вызывает сомнений. По крайней мере, значения абсолютных констант скоростей реакций изобутилена с относительно устойчивыми катионами (C6H5)2CfH и С6Н5С+Н2, которые можно рассматривать в качестве нижнего предела kp, составляют порядка 107л/(моль-с) (импульсивный радиол из, 297 К) [272]. Как видно, значения kp лежат ниже диффузионного предела: для большинства мономеров с вязкостью 0,5 кПа-с при 300 К составляет около 1010 л/(молъ-с). В условиях образования вязкого продукта, особенно при низкотемпературной полимеризации изобутилена, значения kp уменьшаются, например для системы изобутан- полиизобутилен kp ~ 106 л/(моль-с) [273, с. 61], и кинетические константы kp могут оказаться выше kD. Очень высокие скорости полимеризации в сочетании с достаточно большой экзотермичностью (71,9 кДж/моль) создают ситуацию, при которой даже очень медленное добавление инициатора и быстрое перемешивание недостаточны для отвода выделяющегося при реакции тепла в жидкой фазе, особенно в микрообластях, прилежащих к растущим центрам. Именно к такому выводу привело критическое рассмотрение экспериментальных данных в [68, с. 144]. Лишь использование предельно разбавленных растворов мономера (около 0,01-0,02 моль/л), которые не представляют интереса для реальных процессов полимеризации изобутилена, могут обеспечить режим, близкий к изотермическому. В общем же случае при попадании капель инициатора в жидкий мономер реакция начинается еще до того, как инициирующие частицы успевают продиффундировать достаточно далеко. Реакция протекает настолько быстро, что изобутилен может полимеризоваться задолго до того, как две капли - мономер и инициатор - успеют смешаться. Отсюда следует, что в этих и многих других катионных системах при полимеризации изобутилена не может соблюдаться принцип стационарности, а это означает, что на практике молекулярные массы полимера оказываются заметно более низкими, ММР более широкими, повышается вязкость олигомерных продуктов.[9, С.120]

Кинетические константы процесса, найденные с помощью уравнений (36), подчиняются аррениусовской зависимости и являются переменными величинами [в интервале исследованных степеней закоксованности 0,08—2 % (масс.)]. На рис. 26, а приведены зависимости предэкспоненциальных множителей In Л„ основной (дегидрирования) и побочной (крекинга) реакций от относительной закоксованности С (С = СТ/СМИН); в интервале 550—570 °С между In АО и Е имеет место симбатная линейная зависимость (так называемый компенсационный эффект) (рис. 26, б). Приведенные зависимости описываются следующими соотношениями:[3, С.122]

Газовыделение из порообразователей обычно описывается кинетическим уравнением первого порядка (например, в случае использования азодикарбонамида). Поскольку кинетические константы зависят от температуры, то количество выделившегося газа зависит от полной термической предыстории частиц. С другой стороны, при высоких давлениях выделившийся газ может раствориться в расплаве. Даррил и Гриски [54] установили, что при относительно низких концентрациях газа для некоторых пар расплав—газ применим закон Генри. Константа закона Генри экспоненциально возрастает с температурой.[2, С.548]

В настоящее время влияние растворителя на полимеризацию следует рассматривать не только с точки зрения полярности, но и в рамках «координационной модели», развитой для химии ионных реакций в неводных растворителях и характеризующей среду в виде донорных (DN) и акцепторных (AN) чисел [78, 232]. Оптимальная комбинация донорных (сольватация катиона) и акцепторных (сольватация аниона) свойств среды с учетом свойств мономера как растворителя будет благоприятствовать разделению и стабилизации зарядов. Так, например, нитрометан более хороший растворитель, чем хлористый метилен (DNCH3N02= 2,7, DNCH2C,2 = О, ANCH3N02 = 20,4, ANCH2a2= 0) за счет специфической координации и неспецифической сольватации. Важным свойством среды является вязкость. Она может влиять на наиболее быстрые стадии полимеризации (рост, обрыв). Хотя надежно измеренные кинетические константы при полимеризации изобутилена находятся ниже диффузионного предела, накопление гелеобразного продукта вокруг твердого катализатора может представлять случай диффузионного контроля реакции.[9, С.95]

В книге кинетические константы выражены через единицы: моль, л, сек., кроме случаев, специально оговоренных в тексте.[11, С.6]

СН3С1, 195 К). Естественно, что имеющиеся кинетические константы и, в пер-[7, С.120]

В главе III в разделе «Микроструктура полимерной цепи» дано изложение работ последних лет по радикально-гомогенной полимеризации, приводящей к образованию стереорегулярных полимеров.Значительно пополнен новыми данными раздел, в котором приведены кинетические константы полимеризации. В этой же главе дано описание новых методов определения кинетических констант.[11, С.5]

Наиболее важным методом изучения механизма полимеризации, как и для всех сложных реакций, является исследование кинетики этого процесса в различных условиях. Основная ценность кинетического метода заключается в том, что он позволяет количественно связать отдельные элементарные реакции с наблюдаемой суммарной реакцией. Эта связь осуществляется путем сопоставления эмпирически найденных кинетических закономерностей с «теоретическими» уравнениями, выведенными на основе той или иной совокупности предполагаемых элементарных реакций. Кроме того, кинетические исследования позволяют определить кинетические константы отдельных элементарных реакций, что открывает возможность в количественной форме исследовать зависимость между «троением молекул и их реакционной способностью по отношению к тем или иным реакциям. Поэтому определение абсолютных значений констант •скоростей элементарных реакций является одной из основных задач химической кинетики.[11, С.10]

В табл. 31 приведены кинетические константы полимеризации винилацетата при 25° С, определенные Мелвиллем [9] для различных глубин полимеризации.[11, С.179]

Следует иметь в виду, что приведенные в таблице кинетические константы роста цепи определены далеко не с одинаковой точностью. С наибольшей точностью константы kp определены для винилацетата, метил-акрилата, метилметакрилата и стирола. Однако и для этих мономеров Ер определено с точностью, не большей чем +1 ккал/молъ. Сомнительны данные для винилхлорида. Все же таблица 34 позволяет сделать некоторые интересные выводы.[11, С.206]

В первой части справочника приводятся основные физико-химические константы мономеров, кинетические константы реакции полимеризации, количественные характеристики реакционной способности мономеров в реакциях радикальной полимеризации, данные по влиянию полярности мономеров на их реакционную способность и т. п. Поскольку в последнее время для получения полимеров все шире применяются олигомерные соединения, в главе 1 приводятся также некоторые свойства исследованных олигомеров.[13, С.4]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков, 1981, 264 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Зильберман Е.Н. Примеры и задачи по химии высокомеолекулярных соединений, 1984, 224 с.
6. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
7. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
10. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
11. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
12. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
13. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.
14. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.

На главную