На главную

Статья по теме: Макромолекулы ориентируются

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

На вязкость растворов полимера влияет также давление, под которым происходит истечение раствора. Под действием давления длинные нитевидные макромолекулы ориентируются в направлении движения раствора, благодаря чему снижается сопротивление, оказываемое его течению.[1, С.69]

В тех случаях, когда полимеризация сопровождается небольшим изменением межатомных расстояний, процесс может протекать внутри кристаллической решетки и образующиеся макромолекулы ориентируются вдоль определенной оси кристалла. Происходящие после этого даже небольшие перераспределения межатомных расстояний могут приводить к образованию дефектов и напряжений в решетке, затрудняющих дальнейшую полимеризацию.[3, С.124]

В тех случаях, когда полимеризация сопровождается небольшим изменением межатомных расстояний, процесс может протекать внутри кристаллической решетки и образующиеся макромолекулы ориентируются вдоль определенной оси кристалла. Происходящие после этого даже небольшие перераспределения межатомных расстояний могут приводить к образованию дефектов и напряжений в решетке, затрудняющих дальнейшую полимеризацию.[3, С.177]

П. Вторая группа включает как квазистатические методы, чувствительные к макрорелаксации полимерной системы, так и динамические, частотные или импульсные, также характеризующие макрорелаксацию, но уже не в блоке, а в растворе. Из импульсных методов этой группы уместно упомянуть затухание эффекта Керра, позволяющее прямым образом оценивать жесткость полярных макромолекул, мерой которой в данном случае служит корреляция ориентации электрических диполей вдоль цепи. У абсолютно жестких макромолекул типа алкилполиизоцианатов диполи просто суммируются. Поэтому в постоянном электрическом поле такие макромолекулы ориентируются вдоль силовых линий, образуя псевдожидкокристаллическую систему; степень порядка в этой системе определяется балансом энергий теплового движения и электрического поля; если поле достаточно велико и тепловое движение ока-[2, С.264]

Высокоэластичность расплавов обусловливает ряд специфических явлений, имеющих большое значение п технологии переработки расплавов полимеров. К таким явлениям относится, в частности, эффект Вайссенберга (эффект нормальных напряжений), заключающийся в особенностях кругового движения расплавов, необъяснимых с позиций кчассической гидродинамики. Например, при вращении вала, опущенного п расплав, расплав поднимается по валу вверх. Такое же явление происходит (рис. 5.25), если в центр вращающегося сосуда с расплавом опустить неподвижный вал, трубу или диск, способный перемещаться го вертикали без вращения При вращении сосуда расплав поднимется по валу, втянется внутрь трубы, соберется под диском и поднимет его вверх (рис. 525,6). Подобные явления в обычных ньютоновских жидкостях не происходит (рис. 5.25, а). Вторая особенность расплавов — высокоэластическос восстановление. При течении расплавов полимеров в каналах, капиллярах, фильтрах макромолекулы ориентируются При выходе струн за пределы канала тангенциальные напряжения, вызывающие эту ориентацию, исчезают и немедленно начинается процесс релаксации. Внешне это проявляется в увеличении диаметра струи (экструдата) по сравнению с диаметром канала, из которого вытекает экструд.ат Это явление и называют высоко-эластическим восстановлением, Баррус-эффектом, «разбуханием». Процесс протекает во времени, иногда продолжается несколько часов сопровождается сжатием экструдата по длине — усадкой. Количественно эффект оценивают коэффициентом вы-[5, С.310]

Макромолекулы ориентируются по направлению течения и располагаются параллельно друг другу с образованием ламеле| со складчатыми цепями (кристаллы со складчатыми цепями) (кебабы). Образовавшийся вначале фибриллярный остов из вытянутых цепей (шиш) служит субстратом при эпитаксиальной кристаллизации таких ламелей (рис. 26.30).[6, С.94]

При растяжении образца макромолекулы ориентируются щ близитесь но параллель но друг другу и, следовательно, вдоль <[4, С.112]

В процессе переработки полимеров происходит изменение вязкости в зависимости от условий деформации (напряжения и скорости сдвига). Возникающая аномалия вязкости зависит от внутри- и межмолекулярного взаимодействия. Под действием сдвиговых напряжений макромолекулы ориентируются вдоль направления действия сил, меняется структура, а следовательно, и вязкость. Графическое изображение (рис. II. 1,а) кривой зависимости напряжения сдвига от скорости сдвига (градиента скорости) носит название кривой течения.[8, С.75]

Физико-химические процессы, протекающие при литье термопластов. Пластикация полимера в материальном цилиндре литьевой машины сопровождается переходом материала в вязкотекучее состояние. Гомогенизация расплава завершается при течении полимера с высокой скоростью через сопло, когда вследствие значительных сдвиговых напряжений темн-ра расплава дополнительно повышается. Одновременно в сопле происходит ориентация макромолекул н надмолекулярных образований, к-рая продолжается при течении расплава полимера в литьевой форме. При заполнении формы макромолекулы ориентируются в направлении движения потока материала, причем степень ориентации растет с увеличением сдвиговых напряжений, т. е. с увеличением давления литья, скорости заполнения формы и с уменьшением сечения полости формы. Ориентация сопровождается упрочнением материала в направлении ориентации, что, при соответствующей конструкции формы, позволяет получать изделия с повышенной прочностью тех частей, к-рые несут наибольшую нагрузку в процессе эксплуатации.[9, С.40]

Физико-химические процессы, протекающие при литье термопластов. Пластикация полимера в материальном цилиндре литьевой машины сопровождается переходом материала в вязкотекучее состояние. Гомогенизация расплава завершается при течении полимера с высокой скоростью через сопло, когда вследствие значительных сдвиговых напряжений темп-pa расплава дополнительно повышается. Одновременно в сопле происходит ориентация макромолекул и надмолекулярных образований, к-рая продолжается при течении расплава полимера в литьевой форме. При заполнении формы макромолекулы ориентируются в направлении движения потока материала, причем степень ориентации растет с увеличением сдвиговых напряжений, т. е. с увеличением давления литья, скорости заполнения формы и с уменьшением сечения полости формы. Ориентация сопровождается упрочнением материала в направлении ориентации, что, при соответствующей конструкции формы, позволяет получать изделия с повышенной прочностью тех частей, к-рые несут наибольшую нагрузку в процессе эксплуатации.[10, С.38]

При растяжении образца Макромолекулы ориентируются прн-мнзнтельно параллельно друг другу м, следовательно, вдоль оси[7, С.112]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
9. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
10. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную