На главную

Статья по теме: Необратимые деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Необратимые деформации в полимерах связаны с увеличением подвижности сегментов и молекул к уменьшением энергии межмолекулярного взаимодействия, что делает возможным перемещение макромолекул друг относительно друга. Поэтому вполне понятно, что температура течения с увеличением молекулярной массы полимеров (см. рис. 30) возрастает.[19, С.80]

В вязкотекучем состоянии под действием внешних сил в полимерных телах развиваются необратимые деформации. Вместе с тем вязкому течению полимеров всегда сопутствуют и обратимые (высокоэластические) деформации, развитие которых обусловлено отклонением в процессе течения конформаций макромолекулярных цепей от равновесных. Например, изменение деформации образца полимера в вязкотекучем состоянии под действием постоянного напряжения имеет сначала нестационарный характер, а затем скорость деформации перестает зависеть от времени (рис. V. 16). Установление стационарности указывает на завершение релаксационных процессов развития высокоэластической деформации. Дальнейшее возрастание деформации обусловлено только вязким течением.[3, С.153]

При достаточно высоких температурах, превышающих некоторое условное значение, называемое часто температурой текучести Tf, интенсивность сегментального движения в аморфных полимерах настолько высока, что не связанные в сетку макромолекулы способны под действием внешних механических нагрузок к значительным перемещениям друг относительно друга. Физическое со--етояние полимера, соответствующее таким температурам, называют вязкотекучим, поскольку для него характерны большие необратимые деформации (течение).[1, С.39]

Создание однородного поля напряжений в условиях сдвига на практике реализуется относительно легко, а в случае растяжения требует множества ухищрений, поэтому большинство исследователей работают в условиях сдвигового поля. Оно создается либо с помощью ротационных систем (например, вращения цилиндра в цилиндре или конуса относительно плоскости) или длинных капиллярных трубок. Ротационные приборы подробно описаны в работе [51]. В предыдущем параграфе настоящей главы рассматривались вязкостные характеристики полимерных систем и лишь вскользь упоминались вязкоупругие свойства. Однако практически любая полимерная система способна при определенных условиях воздействия проявлять высокоэластическое деформационное состояние, в котором у нее наблюдаются большие обратимые деформации. Необратимые деформации у полимерных тел могут возникать уже при температурах, близких к температуре стеклования, но там они не играют основной роли.[2, С.175]

Понять причину механических потерь можно, обратившись к рис. II. 2. При болыцих частотах воздействия деформация (связанная с молекулярными перестройками) не успевает произойти и расходуется лишь упругая энергия (вещественная часть модуля велика). При очень малых частотах воздействия (говоря о больших и малых частотах все время надо помнить о принципе ТВЭ) происходят лишь «жидкоподобные» — высокоэластические или" вязкие (необратимые)— деформации, причем фазы деформаций и напряжений совпадают, и расход энергии снова невелик, как невелика и вещественная часть модуля. Резонансные эффекты разыгрываются в переходной области: значительная часть энергии расходуется на молекулярные перестройки, а фазы напряжений и деформаций не совпадают. Тангенс угла механических потерь, численно равный отношению мнимой и вещественной компонент динамического модуля, характеризует диссипацию энергии в переходной области [38, с. 53].[2, С.97]

Температура, при которой необратимые деформации (деформации вязкого течения) начинают преобладать над эластической (обратимой) деформацией, называется температурой текучести 7V Она[4, С.168]

При задании режима деформирования F0 = const необратимые деформации неограниченно увеличиваются во времени. Упругие (высокоэластические) деформации также увеличиваются, но приближаясь к асимптотическому значению ие (°о), величина которого при t -*• оо согласно формуле (3.9) составляет[17, С.242]

Таким образом, для вязкотекучего состояния характерны значительные необратимые деформации, которые резко возрастают при повышении температуры, т. е. Йе/^7^0.[6, С.253]

Пластичность — свойство твердых тел развивать необратимые (истинно остаточные) деформации. Необратимые деформации жидких тел (вязкое течение) развиваются при любом напряжении. Для твердых тел их осуществление требует достижения нек-рого наименьшего напряжения, называемого пределом текучее т н. Практически за предел текучести принимают значение напряжения, при к-ром на кривой зависимости напряжения от деформации наблюдается точка максимума или выход на постоянное напряжение. Часто пределом текучести наз. предел вынужденной высокоэластичности.[20, С.116]

Твердость характеризовали с помощью двух шкал: по Роквеллу R и по Шору D. По Роквеллу измеряют необратимые деформации после вдавливания шарика диаметром 12,7 мм в образец, отлитый из расплава, и снятия нагрузки. При испытаниях по Шору за материал с твердостью, равной 100, принимают такой, в котором отсутствует след при нагрузке в 4,5 кгс, приложенной через сферический наконечник радиусом 0,18 мм. Это — экспресс-испытание, продолжающееся всего 2 с. Его проводят при 23 °С.[15, С.168]

Если в какой-то момент времени снять нагрузку, действующую на образец, то поскольку в сшитом образце необратимые деформации вязкого течения отсутствуют, он полностью восстанавливает свою исходную форму: произойдет его быстрое сокращение вследствие скручивания макромолекул в результате теплового движения (рис. 37). Образец линейного (несшитого) полимера не возвращается в исходное состояние, так как необратимое перемещение макромолекул после снятия нагрузки не исчезает (так же как жидкость не восстанавливает свою форму при переливании ее из одного сосуда в другой). Однако и в линейном, и в сшитом полимере эти процессы релаксации протекают во времени. Перечисленные выше факторы, способствующие ускорению протекания релаксационных процессов, приводят к более быстрому восстановлению исходного состояния полимера.[19, С.92]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Бартенев Г.М. Физика полимеров, 1990, 433 с.
8. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
9. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
10. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
11. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
12. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
13. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
14. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
15. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
16. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
17. Виноградов Г.В. Реология полимеров, 1977, 440 с.
18. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
19. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
20. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
21. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
22. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
23. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
24. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
25. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
26. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную