С увеличением молекулярной массы сополимеров повышаются прочность, эластичность и морозостойкость их вулканизатов. При молекулярной массе примерно 105 ширина ММР не влияет на эти свойства. При повышении молекулярной массы степень возрастания сопротивления разрыву и эластичности вулканизатов сополимеров с разными значениями коэффициента полидисперсности не одинакова (рис. 8) [58]. Аналогичным образом изменяется морозостойкость вулканизатов.[1, С.312]
С увеличением молекулярной массы тройных сополимеров возрастает степень вулканизации, напряжение при удлинении 300%, сопротивление разрыву, эластичность по отскоку, износостойкость и снижается теплообразование и накопление остаточной деформации вулканизатов. С повышением непредельности сополимеров с близкой вязкостью по Муни возрастает их жесткость и восстанавливаемость, снижается характеристическая вязкость и пластичность; вальцуемость при этом улучшается. Вулканизаты сополимеров с большей непредельностью имеют более низкие коэффициент теплового старения, морозостойкость и износостойкость (см. табл. 2) [60, 61].[1, С.313]
Как известно из огромного опыта, накопленного химией, с увеличением молекулярной массы химических соединений подвижность их молекул уменьшается. Полезно подчеркнуть, что устойчивость высокомолекулярных соединений, особенно органических, является следствием не низкого термодинамического потенциала (т. е. малого запаса свободной энергии), а малой подвижности громоздких макромолекул и малой скорости диффузионных процессов. Всякие же физико-химические изменения тел — плавление, растворение, кристаллизация, испарение, деформация — неизбежно связаны с перемещением молекул. Для химических превращений, которые невозможны без непосредственного контакта между молекулами реагирующих веществ, тем более требуются перемещения, диффузионное проникновение одного компонента в массу другого и пр. Естественно, что небольшие молекулы низкомолекулярных соединений, будучи значительно подвижнее макромолекул, гораздо легче подвергаются химическим и физико-химическим превращениям. В температурных условиях земного шара только высокомолекулярные тела достаточно стойки к химическим и физико-химическим превращениям. Долговечность объектов живой и мертвой природы была бы ничтожной, если бы они состояли из низкомолекулярных соединений.[10, С.16]
Высокомолекулярные полиизобутилени с молекулярной массой (0,7 -г- 2,25) • 10б (по Штаудингеру)* представляют собой твердые, каучукоподобные продукты, эластические свойства которых возрастают с увеличением молекулярной массы. По внешнему виду — это почти бесцветная или белая аморфная масса, обладающая незначительной клейкостью; при отсутствии остатков[1, С.337]
Модификация политетрагидрофурана бутандиолом приводит к падению эластичности блоксополимеров при 20 °С вследствие возросшей жесткости полимерной цепи (увеличения концентрации уретановых групп и связанного с этим усиления межмолекулярного взаимодействия) [44]. С увеличением молекулярной массы кристаллического блока в сополимере наблюдается повышение напряжения при удлинении и твердости полимера.[1, С.538]
Старение каучуков, как правило, сопровождается изменением их молекулярной массы, что и обусловливает в основном потерю ими тех или иных свойств. При этом могут протекать два основных типа процессов, приводящих к изменению свойств каучука: а) сопровождающиеся уменьшением молекулярной массы полимера (процессы деструкции), и б) сопровождающиеся увеличением молекулярной массы полимера, которые часто приводят к образованию пространственных структур (процессы структурирования).[1, С.619]
В настоящее время имеется уже достаточно материала для обсуждения этих вопросов. Исследования, проведенные во ВНИИСК [14, с. 33—71; 15], позволили оценить влияние молекулярной массы и молекулярно-массового распределения каучука СКИ-3 на когезионную прочность его сажевых смесей. Было показано, что когезионная прочность невулканизованных сажевых смесей типа брекерной изменяется от 0,05—0,06 до 0,3 МПа при изменении вязкости по Муни каучука СКИ-3 от 40 до 110. Аналогичную закономерность повышения когезионной прочности (до 0,5 МПа) с увеличением молекулярной массы наблюдали и у каучука СКИЛ (полиизопрен, полученный с литиевым катализатором) [16]. В то же время смеси на основе глубоко деструктирован-ного вальцеванием НК [вязкость по Муни (Б-1-4-100) меньше 40] обладают достаточно высокой когезионной прочностью — около 1,0 МПа.[1, С.226]
С увеличением молекулярной массы полимера величина коэффициента В уменьшается во многих случаях в соответствии с уравнением[2, С.109]
С увеличением молекулярной массы полимера возрастает аномалия вязкостных свойств жидкостей. Изменение степени структурирования (аномалии вязкостных свойств) при изменении молекулярной массы полимера можно оценить следующими методами:[2, С.199]
С увеличением молекулярной массы из-за уменьшения подвижности расплава скорость кристаллизации снижается. Температуры, отвечающие максимальной скорости кристаллизации, приведены для ряда полимеров в табл. 3.2. Там же приведены сведения об их молекулярной массе.[4, С.55]
Таким образом, с увеличением молекулярной массы повышается температура текучести и расширяется интервал существования полимера в высокоэластичсском состоянии. Например, при увеличении М полиизобутилена от 1270 до 62500 температура текучести повышается от 273 до 573 К, а интервал высо-коэластичностн увеличивается с 73 до 270 К Но при этом уменьшается интервал между температурами текучести и деструкции, что ограничивает возможность переработки по шмеров в вязкотекучем состоянии Полимеры с широким молекулярно-чассовым распределением характеризуются большей протяженностью переходного состояния из высокоэ 1астичсского в вязко-текучее состояние, поскольку фракции полимеров разно» молекулярной массы имеют различную Гт.[15, С.258]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.