На главную

Статья по теме: Увеличением молекулярной

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

С увеличением молекулярной массы сополимеров повышаются прочность, эластичность и морозостойкость их вулканизатов. При молекулярной массе примерно 105 ширина ММР не влияет на эти свойства. При повышении молекулярной массы степень возрастания сопротивления разрыву и эластичности вулканизатов сополимеров с разными значениями коэффициента полидисперсности не одинакова (рис. 8) [58]. Аналогичным образом изменяется морозостойкость вулканизатов.[1, С.312]

С увеличением молекулярной массы тройных сополимеров возрастает степень вулканизации, напряжение при удлинении 300%, сопротивление разрыву, эластичность по отскоку, износостойкость и снижается теплообразование и накопление остаточной деформации вулканизатов. С повышением непредельности сополимеров с близкой вязкостью по Муни возрастает их жесткость и восстанавливаемость, снижается характеристическая вязкость и пластичность; вальцуемость при этом улучшается. Вулканизаты сополимеров с большей непредельностью имеют более низкие коэффициент теплового старения, морозостойкость и износостойкость (см. табл. 2) [60, 61].[1, С.313]

Как известно из огромного опыта, накопленного химией, с увеличением молекулярной массы химических соединений подвижность их молекул уменьшается. Полезно подчеркнуть, что устойчивость высокомолекулярных соединений, особенно органических, является следствием не низкого термодинамического потенциала (т. е. малого запаса свободной энергии), а малой подвижности громоздких макромолекул и малой скорости диффузионных процессов. Всякие же физико-химические изменения тел — плавление, растворение, кристаллизация, испарение, деформация — неизбежно связаны с перемещением молекул. Для химических превращений, которые невозможны без непосредственного контакта между молекулами реагирующих веществ, тем более требуются перемещения, диффузионное проникновение одного компонента в массу другого и пр. Естественно, что небольшие молекулы низкомолекулярных соединений, будучи значительно подвижнее макромолекул, гораздо легче подвергаются химическим и физико-химическим превращениям. В температурных условиях земного шара только высокомолекулярные тела достаточно стойки к химическим и физико-химическим превращениям. Долговечность объектов живой и мертвой природы была бы ничтожной, если бы они состояли из низкомолекулярных соединений.[10, С.16]

Высокомолекулярные полиизобутилени с молекулярной массой (0,7 -г- 2,25) • 10б (по Штаудингеру)* представляют собой твердые, каучукоподобные продукты, эластические свойства которых возрастают с увеличением молекулярной массы. По внешнему виду — это почти бесцветная или белая аморфная масса, обладающая незначительной клейкостью; при отсутствии остатков[1, С.337]

Модификация политетрагидрофурана бутандиолом приводит к падению эластичности блоксополимеров при 20 °С вследствие возросшей жесткости полимерной цепи (увеличения концентрации уретановых групп и связанного с этим усиления межмолекулярного взаимодействия) [44]. С увеличением молекулярной массы кристаллического блока в сополимере наблюдается повышение напряжения при удлинении и твердости полимера.[1, С.538]

Старение каучуков, как правило, сопровождается изменением их молекулярной массы, что и обусловливает в основном потерю ими тех или иных свойств. При этом могут протекать два основных типа процессов, приводящих к изменению свойств каучука: а) сопровождающиеся уменьшением молекулярной массы полимера (процессы деструкции), и б) сопровождающиеся увеличением молекулярной массы полимера, которые часто приводят к образованию пространственных структур (процессы структурирования).[1, С.619]

В настоящее время имеется уже достаточно материала для обсуждения этих вопросов. Исследования, проведенные во ВНИИСК [14, с. 33—71; 15], позволили оценить влияние молекулярной массы и молекулярно-массового распределения каучука СКИ-3 на когезионную прочность его сажевых смесей. Было показано, что когезионная прочность невулканизованных сажевых смесей типа брекерной изменяется от 0,05—0,06 до 0,3 МПа при изменении вязкости по Муни каучука СКИ-3 от 40 до 110. Аналогичную закономерность повышения когезионной прочности (до 0,5 МПа) с увеличением молекулярной массы наблюдали и у каучука СКИЛ (полиизопрен, полученный с литиевым катализатором) [16]. В то же время смеси на основе глубоко деструктирован-ного вальцеванием НК [вязкость по Муни (Б-1-4-100) меньше 40] обладают достаточно высокой когезионной прочностью — около 1,0 МПа.[1, С.226]

С увеличением молекулярной массы полимера величина коэффициента В уменьшается во многих случаях в соответствии с уравнением[2, С.109]

С увеличением молекулярной массы полимера возрастает аномалия вязкостных свойств жидкостей. Изменение степени структурирования (аномалии вязкостных свойств) при изменении молекулярной массы полимера можно оценить следующими методами:[2, С.199]

С увеличением молекулярной массы из-за уменьшения подвижности расплава скорость кристаллизации снижается. Температуры, отвечающие максимальной скорости кристаллизации, приведены для ряда полимеров в табл. 3.2. Там же приведены сведения об их молекулярной массе.[4, С.55]

Таким образом, с увеличением молекулярной массы повышается температура текучести и расширяется интервал существования полимера в высокоэластичсском состоянии. Например, при увеличении М полиизобутилена от 1270 до 62500 температура текучести повышается от 273 до 573 К, а интервал высо-коэластичностн увеличивается с 73 до 270 К Но при этом уменьшается интервал между температурами текучести и деструкции, что ограничивает возможность переработки по шмеров в вязкотекучем состоянии Полимеры с широким молекулярно-чассовым распределением характеризуются большей протяженностью переходного состояния из высокоэ 1астичсского в вязко-текучее состояние, поскольку фракции полимеров разно» молекулярной массы имеют различную Гт.[15, С.258]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
4. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
7. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
8. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
9. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
10. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
11. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
12. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
13. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
14. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
15. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
16. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
17. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
18. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
19. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
20. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
21. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
22. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
23. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
24. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
25. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
26. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
27. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
28. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
29. Серков А.Т. Вискозные волокна, 1980, 295 с.
30. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
31. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
32. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
33. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
34. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
35. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
36. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
37. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
38. Виноградов Г.В. Реология полимеров, 1977, 440 с.
39. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
40. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
41. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
42. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
43. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
44. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
45. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
46. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
47. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
48. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
49. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную