На главную

Статья по теме: Диффузионных процессов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В наноструктурных материалах, полученных методами ИПД, кинетика диффузионных процессов исследовалась в нескольких работах [255, 282, 283]. В частности, в работе [255] были проведены исследования диффузии Си в наноструктурном Ni, имеющем медное покрытие. При этом экспериментально определяли глубину проникновения Си в Ni методом вторичной ионной масс-спектрометрии. Сравнительные диффузионные эксперименты были проведены при температурах 423 и 523 К в течение 3 ч, используя как наноструктурный, полученный РКУ-прессованием, так и крупнокристаллический Ni.[6, С.167]

Диффузионные процессы в наноструктурных материалах, полученных консолидацией ультра дисперсных порошков, были объектом ряда исследований [279-281]. Полученные данные демонстрируют резкое ускорение диффузионных процессов в этих материалах, однако количественные оценки и интерпретация результатов весьма противоречивы. Предполагается, что это связано с сохранением некоторой остаточной пористости в образцах, а также нестабильностью их структуры в процессе диффузионных экспериментов.[6, С.166]

На второй стадии отверждения происходит окончательное структурирование системы Скорость отверждения после точки елеобразовании постепенно снижается вследствие исчерпания функциональных [рупп и резкого торможения диффузионных процессов, снижения сегментальной подвижности отверждае-мого полимера.[5, С.182]

Как известно из огромного опыта, накопленного химией, с увеличением молекулярной массы химических соединений подвижность их молекул уменьшается. Полезно подчеркнуть, что устойчивость высокомолекулярных соединений, особенно органических, является следствием не низкого термодинамического потенциала (т. е. малого запаса свободной энергии), а малой подвижности громоздких макромолекул и малой скорости диффузионных процессов. Всякие же физико-химические изменения тел — плавление, растворение, кристаллизация, испарение, деформация — неизбежно связаны с перемещением молекул. Для химических превращений, которые невозможны без непосредственного контакта между молекулами реагирующих веществ, тем более требуются перемещения, диффузионное проникновение одного компонента в массу другого и пр. Естественно, что небольшие молекулы низкомолекулярных соединений, будучи значительно подвижнее макромолекул, гораздо легче подвергаются химическим и физико-химическим превращениям. В температурных условиях земного шара только высокомолекулярные тела достаточно стойки к химическим и физико-химическим превращениям. Долговечность объектов живой и мертвой природы была бы ничтожной, если бы они состояли из низкомолекулярных соединений.[3, С.16]

Сопоставление этих уравнений показывает, что, во-первых, с увеличением вязкости значения Кр и К0 уменьшаются, а во вторых, К0 значительно более чувствительна к величине эффективной вязкости среды, чем А"р. Отношение К^/К0 с увеличе-. нием степени превращения растет, а следовательно, растет и скорость реакции полимеризации. Значения К~ начинают существенно изменяться при Хм > 0,5. Очевидно, что увеличение вязкости приводит к замедлению диффузионных процессов. В реакции роста макрорадикала принимают участие и макро-, и микрочастицы, т. е. макрорадикал и молекула мономера. Вместе с тем обрыв цепи происходит легче всего за счет рекомбинации двух макрорадикалов. Поэтому Кр должна уменьшаться значительно медленнее, чем К0, а вместе с тем их отношение должно расти, и, следовательно, должна возрастать скорость полимеризации в целом, что и наблюдается как гель-эффект. Диффузионные ограничения с ростом вязкости для малых молекул возрастают в значительно меньшей мере, чем для громоздких макрорадикалов. Кроме того, макрорадикалы по мере увеличения степени полимеризации, находясь в растворенном состоянии, будут стремиться занять термодинамически наиболее выгодную конформацию статистического клубка.[2, С.233]

Появление структур типа (I) хорошо объясняет возрастание когезионной прочности резиновых смесей из СКИ-3-05. Оказалось, что введение даже 0,1% (в расчете на полимер) хлорида цинка повышает когезионную прочность до 2,5-3,3 МПа при дозировке ПНДФА 0,4-0,5 % масс. Наличие структур типа I объясняет также факт резкого замедления скорости изменения во времени пла-сто-эластических свойств каучука, так как они препятствуют дальнейшему протеканию конформационных и диффузионных процессов, приводящих к "черствлению каучука".[9, С.27]

В зависимости от способа мерсеризации (в массе или в листах) аппаратурное оформление процесса принципиально различно. При мерсеризации в листах стремятся no-возможности сохранить форму последних, чтобы обеспечить равномерное протекание последующего отжима избытка щелочи. Мерсеризацию в листах обычно проводят в ваннах мерсеризационных прессов. Детально особенности протекания процесса и возникающие при этом трудности рассмотрены в книге Гётце [40, с. 74]. Мерсеризация в листах имеет ряд недостатков. В связи с медленным протеканием диффузионных процессов наблюдается значительная неравномерность обработки в разных частях листов; медленно и неравномерно удаляются гемицеллюлозы; необходимо строго следить за скоростью подачи щелочи в пресс, чтобы обеспечить равномерность пропитки и предотвратить всплывание листов. При недостаточной жесткости листов и сильном набухании происходит их деформация, что приводит к неравномерному отжиму. Мерсеризация в прессах — периодический процесс и, следовательно, имеет меньшие возможности для механизации и автоматизации. Предпринимались попытки осуществить непрерывную мерсеризацию в листах, однако они не завершились выходом в промышленность. В настоящее время мерсеризация в листах сохранилась лишь на отдельных производствах, и, по-видимому, нет необходимости подробно рассматривать этот способ.[12, С.48]

Изучение диффузионных процессов, происходящих при формовании вискозных волокон, сопряжено с рядом экспериментальных трудностей вследствие быстрого протекания процессов (доли секунды) и малых геометрических размеров элементарных нитей (Я = 0,003—0,005см).[12, С.180]

Скорость диффузионных процессов в системах с участием молекул полимера, по-видимому, существенно зависит от температуры. Поэтому при переохлаждении системы с концентрацией х0 от температуры Т1 до Г3 (точка ж) процесс установления равновесия идет медленнее, и за тот период, когда при температуре Г2 уже может быть достигнута концентрация, отвечающая необратимости застудневания, при температуре Г3 система будет находиться еще далеко от равновесия (например, в точке з). Нагревание системы до температуры Го приведет ее в точку и, т. е. в область, лежащую выше температур текучести, и лишь последующий процесс установления равновесия составов фаз (в направлении к точке е) вызовет вновь ее застудневание.[16, С.203]

Слюда как минерал слоистой структуры имеет особо важное значение. Мусковит, представляющий собой силикат кальция и алюминия, является почти единственно применяемой разновидностью этого минерала. Пластинки или чешуйки слюды весьма гибки и упруги, обладают высокими электроизоляционными характеристиками, а также термостойкостью. Наполненные слюдой компаунды применяются в электротехнике для коллекторов и т. п. Кроме высоких электрической прочности и термостойкости эти компаунды обладают низкой удельной теплопроводностью, малым во-допоглощением и очень хорошей химической стойкостью, поскольку скорость диффузионных процессов заметно снижается за счет слоистой структуры наполнителя.[4, С.153]

Композиционная неоднородность сополимеров. Сополимеры однородные по составу образуются на гомогенных катализаторах, таких, как (СбН5)2УС12 +R2A1C1; V(C5H702)3 + R2A1C1 [17]. На гетерогенных катализаторах образуются сополимеры неоднородные по составу. К типичным гетерогенным катализаторам относятся системы на основе TiCl3 и VC13. Гетерогенные катализаторы могут образоваться и в случае, когда отдельные компоненты каталитической системы растворяются в полимеризационной среде, но при их взаимодействии образуются или нерастворимые продукты, входящие в состав катализатора, или несколько активных центров, различающихся между собой по активности к этилену и пропилену. Возрастание композиционной неоднородности наблюдали при повышении температуры полимеризации [44]. Это возможно и при регулировании молекулярной массы сополимера водородом, когда в результате передачи цепи образуется новая каталитическая система с другими константами сополимеризации для этилена и пропилена, чем у исходной. Степень однородности сополимеров по составу зависит также и от диффузионных процессов в полимеризуемой среде.[1, С.305]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
7. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
8. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
9. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
10. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
11. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
12. Серков А.Т. Вискозные волокна, 1980, 295 с.
13. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
14. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
15. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
16. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
17. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
18. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
19. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
20. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
21. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
22. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
23. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
24. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
25. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
26. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
27. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
28. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
29. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
30. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.

На главную