На главную

Статья по теме: Неразрушенной структурой

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При малых Р течение полимера происходит практически с неразрушенной структурой, так как в процессе медленного течения надмолекулярные образования успевают восстанавливаться. В соответствии с этим при малых Р скорость деформации у монотонно уменьшается. При больших же Р распавшиеся микроблоки не успевают полностью восстанавливаться и течение происходит в условиях частично разрушенной структуры полимера. Процесс разрушения идет тем быстрее и дальше, чем больше Р. С увеличением Р процесс разрушения надмолекулярной структуры и связанный с ним эффект уменьшения вязкости являются главными, вследствие[2, С.168]

Если значение параметров а — 0 и b = 0, то т = TO — максимальному времени релаксации системьд с неразрушенной структурой, равному т0 exp (ffa/kT). В этом случае процесс течения протекает по схеме Эйринга. Механизм течения, при котором параметры а и b отличны от нуля, получил название механизма Ребиндера **. При таком механизме происходит изменение времени релаксации в процессе течения. Ориентационные механизмы реализуются в системах, состоящих из анизотропных частиц вытянутой формы или из цепочек. Однако в структурированных системах ориента-ционный механизм несуществен по сравнению с механизмом разрушения структуры.[1, С.169]

Лучше всего изучена наибольшая ньютоновская вязкость концентрированных растворов полимеров, которая является характеристикой течения системы с неразрушенной структурой (глава X). Поэтому ее исследование имеет большое значение как метод оценки структуры раствораг тем более, что непосредственное изучение раствора высокой концентрации методом электронной микроскопии встречает большие экспериментальные трудности. Наибольшая ньютоновская вязкость растворов полимеров зависит от концентрации, молекулярного веса растворенного полимера, температуры и природы растворителя.[3, С.417]

Лучше всего изучена наибольшая ньютоновская вязкость концентрированных растворов полимеров, которая является характеристикой течения системы с неразрушенной структурой (глава X). Поэтому ее исследование имеет большое значение как метод оценки структуры раствора, тем более, что непосредственное изучение раствора высокой концентрации методом электронной микроскопии встречает большие экспериментальные трудности. Наибольшая ньютоновская вязкость растворов полимеров зависит от концентрации, молекулярного веса растворенного полимера, температуры и природы растворителя.[4, С.417]

Если входящие в (6.2) параметры принимают значения а=0 или &-»-оо, то т равно максимальному времени релаксации ттах= = тоехр[?//(&Г)] системы в состоянии с неразрушенной структурой, т. е. может реализоваться только механизм Эйринга. В случае реализации механизма Ребиндера а^=0 и 6=^0, чзю приводит к измене-[2, С.148]

Для нитрильного эластомера при значениях Т до 360 К и Р до 0,1 МПа U для вязкого течения не зависит от Г и Р. С повышением напряжения сдвига Р значение U, отвечающее состоянию полимера с неразрушенной структурой, уменьшается до значения (рис. 6.22), соответствующего состоянию с разрушенной структу-[2, С.171]

С позиций обобщенной модели Максвелла релаксационный спектр таких систем характеризуется наличием по крайней мере одного максвелловского элемента с вырожденной вязкостью, представляющего собой упругий элемент, модуль которого равен равновесному значению модуля системы с неразрушенной структурой. Этот вырожденный элемент Максвелла является механическим аналогом устойчивой пространственной структуры. Поэтому разрушение пространственной структуры должно сопровождаться исчезновением вырожденного максвелловского элемента и соответствующим изменением релаксационного спектра. Поскольку, однако, при тиксотропном разрушении происходит не только простое исчезновение предела текучести, но наблюдается также и постепенное уменьшение эффективной вязкости, соответствующей стационарному режиму течения (у = const), то изменение релаксационного спектра, по-видимому, не ограничивается исчезновением только этого вырожденного элемента.[6, С.78]

Вязкость — это свойство жидкости оказывать сопротивление необратимому изменению формы под действием внешних нагрузок. В более узком смысле под вязкостью понимают величину коэффициента пропорциональности в уравнении, связывающем напряжение т и скорость Y сдвига в режиме установившегося течения: т = г\у. Вязкость чрезвычайно чувствительна к материальным характеристикам жидкости (форма и размеры молекул), внешним условиям (температура и давление), режиму деформирования (напряжение и скорость сдвига) и т. п. В соответствии с эмпирическим правилом логарифмической аддитивности влияние каждого из перечисленных выше факторов учитывается с помощью независимой функции г\ (М, Т, т, у, ...) = /i(Af)/2(Tyf.,(Y)f4(Y)... Отсюда наибольшая ньютоновская вязкость при течении расплава полимера с неразрушенной структурой (что соответствует измерениям при т -^ 0) выражается как r| = fi(M)f2(T).[7, С.273]

Изменение структуры полимерных систем, являющееся внутренней причиной В. а. и сопутствующих эффектов, происходит во времени, вследствие чего все эти явления имеют тиксотроппый характер. По мере развития деформации происходит постепенно углубляющееся разрушение исходной структуры системы; этот процесс завершается выходом на режим установившегося течения, к-рому отвечает динамич. равновесие процессов восстановления и разрушения структурных связей. Поэтому В. а., экспериментально оцененная при различных скоростях и напряжениях сдвига, характеризует конечные (предельные) степени тиксотропного разрушения структуры, реализуемые при данных механич. и темп-рных условиях деформирования. Кривая течения в области структурной вязкости описывает совокупность таких предельных состояний полимерной системы при различных напряжениях. При этом области наибольшей ньютоновской вязкости отвечает течение с условно неразрушенной структурой (точнее — структурой, изменения в к-рой не удается зафиксировать вис-козиметрич. методами), а области наименьшей ньютоновской вязкости — течение системы с полиостью разрушенной структурой, так что дальнейшее возрастание напряжения уже не может привести к еще более глубоким структурным превращениям.[8, С.286]

Изменение структуры полимерных систем, являющееся внутренней причиной В. а. и сопутствующих эффектов, происходит во времени, вследствие чего все эти явления имеют тиксотропный характер. По мере развития деформации происходит постепенно углубляющееся разрушение исходной структуры системы; этот процесс завершается выходом на режим установившегося течения, к-рому отвечает динамич. равновесие процессов восстановления и разрушения структурных связей. Поэтому В. а., экспериментально оцененная при различных скоростях и напряжениях сдвига, характеризует конечные (предельные) степени тиксотропного разрушения структуры, реализуемые при данных ме-ханич. и темп-рных условиях деформирования. Кривая течения в области структурной вязкости описывает совокупность таких предельных состояний полимерной системы при различных напряжениях. При этом области наибольшей ньютоновской вязкости отвечает течение с условно неразрушенной структурой (точнее — структурой, изменения в к-рой не удается зафиксировать вис-козиметрич. методами), а области наименьшей ньютоновской вязкости — течение системы с полностью разрушенной структурой, так что дальнейшее возрастание напряжения уже не может привести к еще более глубоким структурным превращениям.[9, С.283]

велла релаксационный спектр таких систем характеризуется наличием по крайней мере одного максвелловского элемента с вырожденной вязкостью, представляющего собой упругий элемент, модуль которого равен равновесному значению модуля системы с неразрушенной структурой. Этот вырожденный элемент Максвелла является механическим аналогом устойчивой пространственной структуры. Поэтому разрушение пространственной структуры должно сопровождаться исчезновением вырожденного максвелловского элемента и соответствующим изменением релаксационного спектра. Поскольку,[5, С.62]

диенового эластомера смещаются в область больших Р. При более высоких значениях у кривая P=f(T) состоит из трех участков (рис. 6.20). В области А (при сравнительно низких температурах) зависимость P = f(T) отвечает состоянию эластомера с разрушенной структурой (ибо при этом начальное сопротивление деформации велико). В области С имеет место состояние с неразрушенной структурой (вязкость установившегося процесса течения здесь[2, С.171]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
5. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
6. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
7. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
8. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
9. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную