На главную

Статья по теме: Разрушения надмолекулярной

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

На начальном этапе развития деформации преобладает ориен-тационный эффект, а затем основную роль начинает играть процесс разрушения надмолекулярной структуры. И при сдвиге, и при растяжении в случае неустановившихся (переходных) режимов сначала развивается обратимая высокоэластическая деформация,, а затем и необратимая деформация (рис. 6.8).[2, С.159]

Правило логарифмической аддитивности применимо лишь в определенных границах изменения температуры, напряжения и молекулярной массы. При больших напряжениях и высоких температурах оно нарушается из-за глубокого разрушения надмолекулярной структуры или перехода к «химическому течению» (т. е. распаду полимера). Справедливость данного правила означает, что там, где оно выполняется, температура и напряжение д^йству-ют на вязкость независимо друг от друга. Для практики важно, что изменения Р, М и N не меняют температурного коэффициента вязкости (активационная природа течения, выраженная уравнением (6.12), не претерпевает модификации), хотя сама вязкость полимера может изменяться. В табл. 6.1 для полимеров разного строения приведены средневесовая молекулярная масса М, критическая молекулярная масса Мк, энергия активации U, постоянная[2, С.153]

При введении в ПВФ пластификаторов (дибутил- и диоктил-фталата) разрушаются надмолекулярные структурные образования и возникает молекулярная (внутрипачечная) пластификация, Структурная (межпачечная) пластификация без разрушения надмолекулярной структуры ПВФ наблюдается при добавлении бутилстеарата [134].[4, С.74]

Для каждого полимера существует некоторое критическое значение напряжения Ркр, ниже которого разрушение надмолекулярных структур происходит медленно, а выше — быстро. Как следует из рис. 6.21, при малых Р (до 0,07 МПа) для эластомера СКД ?/=23 кДж/моль (вязкое течение определяется процессом разрушения надмолекулярной структуры), а при Р = 0,17 МПа происходит переход к значению [/=8 кДж/моль (процесс течения связан с движением свободных сегментов).[2, С.171]

При малых Р течение полимера происходит практически с неразрушенной структурой, так как в процессе медленного течения надмолекулярные образования успевают восстанавливаться. В соответствии с этим при малых Р скорость деформации у монотонно уменьшается. При больших же Р распавшиеся микроблоки не успевают полностью восстанавливаться и течение происходит в условиях частично разрушенной структуры полимера. Процесс разрушения идет тем быстрее и дальше, чем больше Р. С увеличением Р процесс разрушения надмолекулярной структуры и связанный с ним эффект уменьшения вязкости являются главными, вследствие[2, С.168]

У линейных полимеров не должно быть ньютоновской области течения при малых напряжениях, т. е. именно при этих условиях должен проявляться резкий спад вязкости. При очень малых Р течение полимера происходит практически с неизменной надмолекулярной структурой, ибо последняя успевает полностью восстановиться за время опыта. Стабильность структурных микроблоков (высокие средние времена их жизни) делает возможным существование области ньютоновского течения с r] = const. При очень малых Р, когда разрушения надмолекулярной структуры еще не происходит, т) полимера при развертывании и выпрямлении макромолекул в процессе вязкого течения может даже несколько возрастать. При сравнительно больших Р (превышающих 102 Па) более мощный эффект снижения ц из-за разрушения надмолекулярной структуры становится определяющим.[2, С.170]

При -неустановившемся течении зависимость продольной вязкости от относительной деформации определяется скоростью деформации (рис. V. 7). На начальном этапе развития (область А) вязкость пропорциональна деформации, что было показано Карги-ным и Соголовой на примере высокомолекулярного полиизобути-лена *. Область А будет тем шире, чем выше скорость деформации. Физический смысл нарушения пропорциональности связан с протеканием при деформировании конкурирующих процессов: ориентации, обусловливающей рост К, и разрушения надмолекулярной структуры, приводящей к падению К (см. гл. VI). Для легкости сопоставления данные зависимости сдвиговой вязкости, например от скорости деформации, представляются в приведенных координатах (рис. V. 8). Таким ? образом удается уложить на одну обоб- "^ щенную кривую данные для вязкости при ? различных температурах и даже для различных полимеров. Независимость хода кривых от температуры (температурно-[1, С.179]

Характер течения полимерных систем зависит как от вида деформации (сдвига, растяжения), так и от скорости потока (квазистатический или динамический режим). В процессе течения полимеров разных молекулярных масс при определенных напряжениях и частотах внешнего воздействия возможен их переход, по данным Виноградова с сотр., из вязкотекучего состояния не только в высокоэластическое, но и в стеклообразное. Наличие у аморфных полимеров структурной упорядоченности флуктуационной природы проявляется и в вязкотекучем состоянии, влияя на процессы их переработки. После разрушения надмолекулярной структуры в полимерных системах при действии напряжений в условиях повышенных температур их реологические свойства изменяются (текучесть улучшается). Термообработка полимеров позволяет целенаправленно регулировать характер их надмолекулярной структуры, что важно для установления закономерностей процессов переработки.[2, С.172]

Структурные превращения при больших деформациях одноосного растяжения ППО в широком интервале температур. Из полученных экспериментальных данных по изучению деформаций ППО, обладающих крупносферо-литной структурой (размер сферолитов 250 и. и более) (рис. 2), видно, что в области температур от —110 до 50° образцы обладают высокой разрывной прочностью, уменьшающейся с ростом температуры и разрушаются без заметной деформации, при этом форма и размеры сферолитов остаются практически неизменными (рис. 3, а). От —45 до 0° наблюдается развитие деформаций порядка 150% и снижение прочности с ростом температуры. На рис. 3, б показано, что эти деформации обусловлены растяжением самих сферолитов. Следует обратить внимание на то, что в определенном интервале температур прочности образцов изменяются с температурой, а разрывные удлинения оказываются практически постоянными. В области температур от 10 до 50° в образцах реализуются деформации свыше 300% и весь процесс растяжения, как это видно из рис. 2, проходит по трем стадиям, причем форма кривых растяжения является типичной для кристаллических полимеров. Однако в этом эксперименте по-новому проявляется характер разрушения надмолекулярной структуры.[5, С.424]

степенью разрушения надмолекулярной структуры испытуемого материала при его деформировании на реометре. Показатель 6,-характеризующий максимальный момент (Afmax), отражает вулканизационные свойства резиновой смеси, но одновременно может быть использован для оценки свойств вулканизатов. Фирмой «Монсанто» и связанными с нею предприятиями была проделана работа по установлению корреляции между показателем 6 реометра и определенным обычным способом модулем при удлинении 300%. Для большинства резиновых смесей имеет место прямолинейная корреляционная зависимость. Однако эти два испытания резко отличаются во многих отношениях, так что прямой корреляционной зависимости для всех резиновых смесей гарантировать нельзя.[3, С.208]

где С3 — константа, определяемая только-строением полимерных цепей; ni — показатель степени, характеризующий влияние молекулярной массы на надмолекулярную-структуру полимера (он не зависит от строения полимерных цепей) ; О4 — константа,. характеризующая скорость разрушения надмолекулярной структуры с увеличением напряжения сдвига и зависящая от исходной. структуры и молекулярной массы (не зависит от температуры) .[6, С.78]

так как одновременно развиваются высокоэластическая деформация и вязкое течение. Скорость установления высокоэластической составляющей затем снижается до нуля (точка Б) —внутренние высокоэластические силы уравновешивают внешние. На участке БВГ наблюдается только необратимое течение, скорость которого увеличивается из-за разрушения надмолекулярной структуры, и достигает постоянного значения на установившейся стадии течения (участок ВГ). При очень малых скоростях течения разрушения надмолекулярной структуры линейного полимера практически не происходит и кривая течения имеет монотонный вид.[2, С.166]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
4. Пашин Ю.А. Фторопласты, 1978, 233 с.
5. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
6. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.

На главную