На главную

Статья по теме: Образуются макромолекулы

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В процессе полимеризации, как уже говорилось, образуются макромолекулы разной молекулярной массы. Широкий разброс значений молекулярной массы обычно приводит к ухудшению механических свойств полимеров Поэтому при получении полимеров стремятся регулировать их молекулярную массу. Для этого используют, в частности, реакцию передачи цепи, которая заключается в том, что вводимое в систему вещество — регулятор — обрывает растущую цепь, но при этом само становится свободным радикалом и начинает новую кинетическую цепь реакции полимеризации. Таким образом, реакция передачи цепи приводит к продолжению кинетической цепи и прекращению (ограничению) роста материальной цепи (макромолекулы). Передача цепи может происходить не только с помощью регуляторов, но и через молекулы растворителя, примеси л т. д. В качестве регуляторов применяют хлорированные углеводороды, меркаптаны и др Особенно широко регуляторы используются в производстве синтетических каучуков.[4, С.117]

Для ,получения полимеров наибольшего молекулярного веса необходимо строгое соблюдение эквимолекулярного соотношения исходных веществ. При этом условии на каждой промежуточной стадии процесса образуются макромолекулы с различными функциональными группами на обоих концах цепи, благодаря чему они могут продолжать взаимодействовать между собой. При избытке любого исходного компонента возможно прекращение поликонденсации (вследствие образования только карбоксильных групп или только аминогрупп на концах макромолекул).[1, С.439]

В связи с этим образуются макромолекулы полистирола с различными концевыми группами, например:[1, С.545]

Как можно видеть из приведенных схем реакций роста и обрыва цепи, образуются макромолекулы полимера разной молекулярной массы. Широкий разброс значений молекулярной массы для образца полимера обычно приводит к ухудшению его механических свойств. Поэтому при получении полимера стремятся регулировать его молекулярную массу, что можно осуществить путем направленного изменения скорости роста цепи.[3, С.24]

Как можно видеть из приведенных схем реакций роста и обрыва цепи, образуются макромолекулы полимера разной молекулярной массы. Широкий разброс значений молекулярной массы для образца полимера обычно приводит к ухудшению его механических свойств. Поэтому при получении полимера стремятся регулировать его молекулярную массу, что можно осуществить путем направленного изменения скорости роста цепи.[10, С.16]

Как можно видеть из приведенных схем реакций роста и обрыва цепи, образуются макромолекулы полимера разной молекулярной массы. Широкий разброс значений молекулярной массы для образца полимера обычно приводит к ухудшению его механических свойств. Поэтому при получении полимера стремятся регулировать его молекулярную массу, что можно осуществить путем направленного изменения скорости роста цепи.[13, С.16]

В результате полимеризации окиси пропилена, инициированной пропиленгликолем, образуются макромолекулы, содержащие концевые гидроксильные группы. Если реакция продолжается при действии окиси этилена, рост цепи происходит по обоим концам центрального блока[9, С.303]

Обрыв цепи может происходить при любой длине растущего макрорадикала. Поэтому при полимеризации образуются макромолекулы разной длины (разной степени полимеризации). Этим. объясняется полимолекулярность синтетических полимеров, описываемая соответствующими молекулярно-массовыми распределениями.[2, С.11]

Разрыв связей в основной молекулярной цепи может осуществляться как химическим, так и физическим путем. При расщеплении макромолекул сначала образуются макромолекулы, имеющие строение исходной основной цепи, но меньшую степень полимеризации. С увеличением степени деструкции могут образовываться низкомолекулярные фрагменты (например, олигомеры и мономеры), свойства которых позволяют получить информацию о структуре полимера в целом. Особенно важными являются термическая и химическая деструкция; однако механодеструкция и деструкция под действием радиационного лзлучения также играют существенную роль в теории и практике.[6, С.246]

В случае сополимеризации метилметакрилата с аллилметакри-латом и других подобных систем, где одна из двойных связей сшивающего агента такая же, как у другого мономера, а вторая значительно менее-активна, на первой стадии реакции образуются макромолекулы, состоящие главным образом из метакрилатных звеньев, с боковыми непрореагировавшими аллильными подвесками; в дальнейшем эти аллильные остатки могут взаимодействовать с оставшимися мономерами или с другой полимерной цепью[7, С.226]

Такой процесс называется диспропорционированием макрорадикалов. Эти реакции протекают на протяжении всего процесса полимеризации, но в наибольшей степени - в начальный период процесса, когда вязкость среды небольшая. В результате обрыва цепи образуются макромолекулы различной длины. Скорость обрыва цепи намного превышает скорость роста цепи. Энергия активации реакции обрыва цепи невелика, а иногда приближается к нулю.[5, С.26]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
6. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
7. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
8. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
9. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
10. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
11. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
12. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
13. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
14. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
15. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
16. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
17. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную