На главную

Статья по теме: Полимеризации увеличивается

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Скорость радиационной полимеризации увеличивается также при проведении процесса в среде осадителя или в эмульсии.[1, С.97]

Скорость эмульсионной полимеризации увеличивается с ростом температуры и концентрации не только инициатора (как это имеет место во всех видах свободнорадикальной полимеризации), но и эмульгатора. Последнее ведет к увеличению числа частиц, защищенных и стабилизованных слоем эмульгатора, что повышает в целом устойчивость системы. Инициаторы эмульсионной, полимеризации обычно растворимы в воде, т. е. реакция инициирования полимеризации мономера протекает на границе раздела лолимер-но-мономерных частиц с водой. Далее полимеризация захватывает объем мономера в мицелле. Если мономер частично растворим в воде, то полимеризация начинается и в водном его растворе, и в мицеллах поверхностно-активного вещества.[4, С.83]

Скорость роста цепи описывается уравнением (2.1), где [М*] в ходе полимеризации увеличивается и определяется величиной[5, С.122]

Полимеризация в массе, или блочная полимеризация, проводится в отсутствие растворителя. По мере полимеризации увеличивается вязкость среды и затрудняется отвод тепла, вследствие чего •полимеризация в различных точках системы протекает при разной температуре, и полимер получается неоднородным по молекулярной массе. Полимеризацию в массе целесообразно применять в тех случаях, когда полученный блок поступает в эксплуатацию без какой-либо дополнительной обработки.[3, С.14]

На процесс радикальной полимеризации оказывают влияние температура, концентрации инициаторов и мономеров, давление. С повышением температуры процесса и концентрации инициатора суммарная скорость полимеризации увеличивается, а молекулярная масса образующегося полимера уменьшается.[6, С.147]

Аналогичным образом на кинетику радикальной полимеризации влияет изменение температуры. Обычно скорость полимеризации возрастает в 2—3 раза при повышении температуры на 10 °С. Повышение температуры облегчает р.аспад инициатора на радикалы, вместе с тем возрастает подвижность всех частиц системы — молекул и радикалов,— следовательно, увеличивается вероятность столкновения частиц. Это приводит к тому, что возрастают скорости реакций роста и обрыва цепи. Таким образом, с повышением температуры всегда общая скорость полимеризации увеличивается, а молекулярная масса полимера уменьшается, возрастает доля низкомолекулярных фракций. Повышение температуры способствует одновременно образованию разветвленных макромолекул, нарушению химической регулярности построения полимерной цепи, так как увеличивается вероятность вхождения мономеров в цепь по принципу Г—Г или X—X (см. стр. 12).[7, С.48]

Елисеевой я др. показано [34]', что при -полимеризация этил-акрилата скорость полимеризации увеличивается с повышением концентрации эмульгатора в степени, зависящей от его типа.[9, С.90]

При радиолизе растворов полиметилметакрилата в винил-ацетате и стироле скорость полимеризации увеличивается с повышением концентрации полиметилметакрилата и проходит через максимум при содержании его —60% 782. При глубине полимеризации —5—10% полимеризация винилацетата начинает идти с ускорением, что связано, по-видимому, с эффектом геле-образования. Основная фракция полимера, полученного при радиолизе раствора полиметилметакрилата в винилацетате, содержит смесь полиметилметакрилата и блоксополимера. С помощью меченного С14 показано, что средняя длина полиметил-метакрилатной части цепи блоксополимера на —35% меньше, чем в исходном полиметилметакрилате. На основании этого авторы делают вывод о том, что образование —70% блоксополимера инициируется макрорадикалами, образующимися при разрыве полиметилметакрилата по главной цепи. В этом случае обрыв цепи происходит в результате диспропорционирования или передачи. Радиационные выходы радикалов из чистых мономеров составляют для стирола 0,41, для винилацетата 5,65.[18, С.101]

Активность а-олефинов, имеющих на конце фенильную группу, в анионно-координационной полимеризации увеличивается с удалением фенильной группы от двойной связи: 5-фенилпентен > > 4-фенилбутен > аллилбензол 1331.[18, С.154]

Фосфонитрилхлорид полимеризуется при облучении рентгеновскими лучами с жесткостью 50 кв. Скорость полимеризации увеличивается с температурой и максимальна вблизи температуры 114°С, а затем падает почти до нуля732. Скорость полиме-[18, С.95]

Теми же авторами [179] было найдено, что при добавлении к стиролу 0,01 молъ/л перекиси бензоила скорость радиационной полимеризации увеличивается в 3 раза, что соответствует увеличению скорости инициирования в 9 раз. Очевидно, энергия, поглощенная стиролом, передается перекиси бензоила, вызывая распад ее на радикалы, аналогично тому, что было найдено для системы бензол — перекись бензоила. Если вместо перекиси бензоила ввести в стирол динитрил азоизомасляной кислоты, то увеличения скорости полимеризации не наблюдается. Это объясняется специфичностью процессов переноса энергии возбуждения.[10, С.79]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Зильберман Е.Н. Примеры и задачи по химии высокомеолекулярных соединений, 1984, 224 с.
6. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
7. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
8. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
9. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
10. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
11. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
12. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
13. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
14. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
15. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
16. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
17. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
18. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
19. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.
20. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную