На главную

Статья по теме: Концентрации эмульгатора

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При определенной концентрации эмульгатора, соответствующей достижению плотной упаковки молекул ПАВ в адсорбционном слое и минимальному поверхностному натяжению на границе раздела фаз, в объеме начинается и заканчивается формирование мицелл, представляющих собой частицы коллоидной (мицелляр-ной) фазы [21, 22]. Такая концентрация называется критической концентрацией мицеллообразования (ККМ).[1, С.144]

Зависимость скорости полимеризации от концентрации эмульгатора при применении 0,1% персульфата калия описывается также уравнением v = &[S]'/2, где [S] — концентрация эмульгатора (% от массы водной фазы). С увеличением количества эмульгатора увеличивается скорость полимеризации и молекулярная масса полистирола.[1, С.151]

Третий случай — зависимость скорости полимеризации от концентрации эмульгатора до определенной ее величины выражается прямой, а в дальнейшем — не зависит от концентрации эмульгатора.[1, С.150]

ККМ понижается в присутствии электролитов, при повышении концентрации эмульгатора и увеличении длины его углеводородной цепи, а также при внедрении углеводородов, особенно полярных, в ядро мицеллы при солюбилизации. Солюбилизация наблюдается только при концентрации эмульгатора выше ККМ. Растворяющееся вещество проникает в мицеллу и может ориентироваться определенным образом. Объем мицеллы увеличивается в 2—3 раза (рис. 1).[1, С.145]

Второй случай характеризуется зависимостью скорости полимеризации от концентрации эмульгатора в степени '/2, в особенности при образовании свободных радикалов инициатора в водной фазе:[1, С.150]

По теории Медведева существует три типа зависимости скорости полимеризации от концентрации эмульгатора. При использовании масдорастворимых инициаторов полимеризации скорость пропорциональна концентрации эмульгатора в водной фазе в первой степени:[1, С.150]

Устойчивость эмульсии зависит от многих условий: количества эмульгатора и электролита, количества, плотности и полярности эмульгируемой жидкости, рН раствора эмульгатора, способа перемешивания, температуры и пр. Повышение концентрации эмульгатора в водном растворе и наличие в нем некоторого количества электролита повышают устойчивость эмульсии.[1, С.146]

Основные положения теории Медведева были развиты в других работах, в которых считается, что зоной реакции полимеризации является мономолекулярный слой квазикристаллической структуры, образованный эмульгатором и мономером. В этом слое молекулы эмульгатора образуют систему микрокапилляров,, представляющих в поперечнике шестигранники. Капилляры, строение которых определяется природой эмульгатора и условиями полимеризации, являются своеобразными ячейками — местом протекания элементарных реакций полимеризации. Приведенные взгляды подтверждены кинетическими уравнениями, выражающими зависимость скорости и степени полимеризации от концентрации эмульгатора и инициатора при полимеризации хлоропрена [39]. Принимается, что все стадии полимеризации: инициирование, рост и обрыв полимерных цепей — происходят в адсорбционных слоях эмульгатора, независимо от растворимости всех компонентов в воде.[1, С.150]

Полимеризация. Товарные латексы обычно стремятся получить с высокой концентрацией полимера. Это обусловлено как экономическими соображениями, так и качеством получаемых на основе латексов изделий. Обычно продукты эмульсионной низкотемпературной полимеризации после отгонки незаполимеризовавшихся мономеров содержат менее 30% сухих веществ. Средний размер частиц в них составляет 50—150 нм. При концентрировании таких латексов вязкость системы резко возрастает, и при содержании сухих веществ около 50% латекс становится непригодным для переработки. Для получения текучих латексов с высокой концентрацией в процессе полимеризации -необходимо обеспечить образование крупных частиц. Этого можно достигнуть уменьшением концентрации эмульгатора {40], но заметное увеличение размеров частиц (рис. 2) обеспечивается лишь при очень низких концентрациях эмульгатора и соответственно резко пониженной скорости полимеризации (рис. 3) [40]. Для обеспечения стабильности такой системы в промышленности эмульгатор добавляют в процессе полимеризации (например, таким образом получаются латексы низкотемпературной полимеризации типа 2100 или 2105). При этом для достижения конверсии 60% требуется почти 60ч. В общем получать латексы с большим размером частиц и широким их распределением по величине непосредственно в процессе полимеризации считается непрактичным, хотя имеются сообщения о получении[1, С.590]

По исходной концентрации эмульгатора в реакционной среде и количеству эмульгатора, израсходованному на титрование до достижения ККМ, можно рассчитать количество эмульгатора (в моль), необходимое для насыщения поверхности латексных частиц.[3, С.40]

При эмульсионной полимеризации винилхлорида скорость процесса и свойства полимера зависят от природы и концентрации эмульгатора и инициатора, от рН среды, от соотношения винилхлорида и водной среды (водный модуль), от температуры и других факторов.[2, С.26]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
6. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
7. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
8. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
9. Пашин Ю.А. Фторопласты, 1978, 233 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
12. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
13. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
14. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
15. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
16. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
17. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
18. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
19. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
21. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную