На главную

Статья по теме: Сопротивление материала

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Сопротивление материала разрыву определяют, как правило, по деформационным кривым. Это предельное напряжение, при котором образец разрывается. Такое определение общепринято и поэтому обычно говорят о пределе прочности. Значения прочности, полученные таким образом,очень велики; для твердых полимеров они лежат в диапазоне от 500 до 1000 кГ1см2> Однако механическая прочность проявляется только начиная с определенного значения молекулярного веса. С увеличением степени полимеризации прочность материала сначала повышается, а затем при « = 600 приобретает постоянное значение. Зависимость прочности полимеров от их молекулярного веса представлена в общем виде на рис. 98.[3, С.221]

Сопротивление материала разрыву определяют, как правило, по деформационным кривым. Это предельное напряжение, при котором образец разрывается. Такое оппепеление обшеппипято и поэтому обычно говорят о пределе прочности. Значения прочности, полученные таким образом,очень велики; для твердых полимеров они лежат в диапазоне от 500 до 1000 кГ/см2. Однако механическая прочность проявляется только начиная с определенного значения молекулярного веса. С увеличением степени полимеризации Прочность материала сначала повышается, а затем при /г —600 приобретает постоянное значение. Зависимость прочности полимеров от их молекулярного веса представлена рис. 98.[8, С.221]

При малых скоростях роста трещины составляющими кинетической энергии в R можно пренебречь. Тогда сопротивление материала распространению трещин будет включать удельную поверхностную энергию 2у (требуемую для преодоления силы сцепления атомов или молекул, действующей поперек вновь образованной поверхности разрыва среды), энергию Vre упругого втягивания в матрицу напряженных молекул, энергию VPi — пластического деформирования и энергию VCk — химических реакций, вызванных разрывом цепи. Энергии снятия внутренних напряжений (С//) и химических реакций с окружающей средой (UCh) нужно вычесть из R:[1, С.337]

С учетом ранее разработанных концепций, известных для металлов, значительное развитие получила количественная оценка вклада пластического деформирования в сопротивление материала полимеров росту трещины R. С учетом различия между Ri (сопротивлением хрупкого материала росту трещины), при условии плоской деформации, и R? (сопротивлением пластического материала росту трещины), связанным с пластическим деформированием при условии плоского напряжения, выражение (9.12) можно представить в виде[1, С.341]

Иногда в трактовке механизма трения твердых поверхностей исходят из представлений о единой природе трения, предполагая, что основное сопротивление, которое приходится преодолевать при трении, — сопротивление материала микровыступов сдвигу. Согласно этим представлениям, при трении срезаются не только молекулярные мостики, возникшие вследствие адгезии трущихся тел, но и сам материал (микровыступы) более слабой фрикционной пары. Поэтому срез происходит, как правило, по площади, во много раз. превышающей суммарную площадь мест молекулярного контакта. Если сделать правильную оценку площади среза трущихся тел, то удельная сила трения, рассчитанная на единицу фактической площади контакта, должна оказаться близкой к сопротивлению материала срезу.[2, С.357]

В предыдущем разделе было показано, что увеличение коэффициента интенсивности напряжений или GI путем вынужденного расширения трещин способствует их росту с докритической скоростью (рис. 9.6 и 9.7). Так как сопротивление материала распространению трещины /? растет с увеличением а, то новое равновесие между GI и R может быть получено вслед за любым изменением GI. Однако если GI непрерывно возрастает в зависимости от Ki, то достигается точка нестабильного роста трещины. Нестабильность может характеризоваться тем, что в этой точке сопротивление материала R(d), согласно уравнению (9.13), недостаточно чувствительно к скорости, чтобы компенсировать рост GI. Следовательно, ускорение роста трещины происходит до такого значения ее скорости, при котором следует учитывать силы инерции и конечную скорость ve распространения упругих волн [67, 181 —182]. До тех пор вкладом в /? кинетической энергии отступающих поверхностей разрушения пренебрегают. В точке начала нестабильного роста трещины в ПММА со скоростью ~0,1 м/с вклад кинетической энергии равен 6 Дж/м3. При таких скоростях этот вклад представляет незначительную часть средней плотности энергии деформации,[1, С.359]

Наряду с изложенным подходом некоторыми исследователями применяется формально термодинамический подход к разрушению, основанный на реологических моделях Кельвина, Максвелла и др. [11.9]. При этом рассмотрении в понятие прочности входит предельное сопротивление материала либо пластической деформации, либо хрупкому разрушению, либо разрушению после пластического течения. Этот метод никакой специфики поведения полимеров не отражает.[2, С.293]

В предыдущем разделе (рис. 9.13) уже упоминалось, что, согласно наблюдениям Феллерса и К.и [146], напряжение разрыва ПС лишь плавно возрастает с увеличением Мп>2Ме. Их результат достаточно хорошо соответствует данным Дёлля и Вейдмана [15, 50]. Эти авторы определили форму трещины серебра, выделенное количество тепла Q и сопротивление материала росту трещины R для ряда образцов ПММА с точно определенными молекулярными массами Ми, в интервале значений 1,Ы05—8-Ю6 г/моль. Измеряя раскрытие трещины 2и, ширину трещины серебра 2ус и длину последней гр при скорости распространения 10~8 м/с они отмечали, что эти параметры, характеризующие форму трещины серебра, увеличивались с ростом Mw до значений М№~2-105. При более высоких значениях Mw наблюдались едва заметные изменения 2и и гр и очень слабый рост ширины трещины серебра [15]. Это означает, что вначале (Ми,<1,6-105) ширина трещины растет с увеличением длины цепи, причем оказалось, что ширина трещины серебра в 5,2 раза больше длины вытянутой цепи. Однако из этого не следует, что именно каждая молекулярная нить состоит из нескольких сильно вытянутых цепей. Можно предположить, что до начала роста трещины серебра молекулы произвольным образом запутаны в клубки. Например, для материала с М„,= 1,Ы05 г/моль расстояние между концами цепей равно 21 нм. В процессе раскрытия трещины серебра это расстояние будет в среднем возрастать на величину деформации фибриллы, т. е. до ~30 нм. В фибрилле диаметром 20 нм и длиной 1200 нм содержится 2360 таких вытянутых молекулярных клубков. Если молекулярная масса сравнима с Ме, .то вследствие перепутывания и взаимопроникания этих молекулярных клубков едва ли возможно образование фибрилл [11, 146, 187]. При больших значениях молекулярных масс (до MU)=2-105 г/моль) размер молекулярных клубков[1, С.383]

В этом разделе была рассмотрена морфология поверхностей разрушения, позволяющая выявить виды локального разделения материала. Были определены микроскопические размеры структурных элементов, которые разрываются или разделяются: молекулярных нитей, фибрилл или молекулярных клубков, ребер, кристаллических ламелл, сферолитов. Однако, когда говорят об их основных свойствах, используют макроскопические термины: разрыв, деформация сдвига, пределы пластического деформирования, сопротивление материала распространению трещины. Не было дано никаких молекулярных критериев разделения материала. Такие критерии существуют для отдельных молекул: температура термической деградации и напряжение или деформация, при которых происходит разрыв цепи. По-видимому, следует упомянуть критическую роль температуры при переходе к быстрому росту трещины [30, 50, 184—186, 197] и постоянное значение локальной деформации еу в направлении вытягивания материала (рис. 9.31), которая оказалась независимой от длины трещины и равной ~60 % на вершине обычной трещины в пленке ПЭТФ, ориентированной в двух направлениях [209]. Следует также упомянуть критическую концентрацию концевых цепных групп Nm, определенную путем спектроскопических ПК-исследований на микроскопе ориентированной пленки ПП в окрестности области, содержащей обычную трещину (рис. 9.32), и поверхности разрушения блока ПЭ [210]. Оба материала вязкие и прочные. По распределению напряжения перед трещиной в пленке ПП можно рассчитать параметры: /Сс = ст(г) 1/^7=8,3 + 2 МН/м3/2 и Gc = 30±17 кДж/м2 [И]. Эти значения в сочетании с данными табл. 9.2 довольно убедительно свидетельствуют о том, что разрыв цепи сопровождается сильным пластическим деформированием. Возможная роль разрыва цепи в процессе применения сильной ориентирующей деформации или после него была детально рассмотрена в гл. 8.[1, С.403]

Ударная вязкость (ак) — сопротивление материала кратковременным (удар'ным) воздействиям; она характеризуется работой, затрачиваемой на разрушение при ударе и отнесенной к единице поверхности. Так же, как и другие показатели прочностных свойств, ударная вязкость зависит от скорости 'нагружения, температуры и природы самого материала.[10, С.37]

Твердость характеризует сопротивление материала вдавливанию в него посторонних предметов. Существуют два основных метода измерения твердости. Первый—по Роквеллу—состоит в том, что на материал давят с определенной нагрузкой и замеряют величину упругой деформации. По второму методу определяют высоту отскакивания бойка от поверхности образца. Согласно Максвеллу, эта величина для полиэтилена выше, чем для мягкой стали, меди и алюминия. Недостаток этого метода заключается в том, что опыт проводится лишь при одной скорости и величине нагрузки. Максвелл сконструировал специальный прибор, в котором допускается изменение скорости и кинетической энергии бойка. Он установил, что для боль-[13, С.54]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
6. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
7. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
10. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
11. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
12. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
13. Северс Э.Т. Реология полимеров, 1966, 199 с.
14. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
15. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
16. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
17. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
18. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
19. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
20. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
21. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную